• Title/Summary/Keyword: growth mixture model

Search Result 111, Processing Time 0.029 seconds

Effects of Glutamine, Glycine and Nucleosides/Nucleotide Mixture on Intestinal Mucosal Growth in Rats (흰쥐의 소장 점막 세포의 성장에 미치는 Glutamine, Glycine과 Nucleosides/Nucleotide 혼합물의 효과)

  • 이선영;오현인
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.130-136
    • /
    • 1997
  • Total parenteral nutritional effect was induced by surgical creation of Thiry-Vella fistula(TVFs) in rats. Glutamine, glycine or nucleosides/nucleotide mixture in solution was injected into the loops for 2, 4, 6, 8 days. Control animals received a 0.9% saline solution. Results include weight gain, total protein, DNA, [$^3$H] thymidine incorporation into DNA, morphometry of the intestine in both TVFs and intestine in continuity. Perfusion of nucleosides/nucleotide mixture into the bypassed loops caused an increase in total protein, DNA content, villous height, villous surface area in loops. The injection of glycine into loops caused an increase in [$^3$H] thymidine incorporation but the mean values of the protein and DNA contents were not significantly different from those in group Cont and group Nuc. Overall values for group Gln were slightly higher than those of the control but the differences were not statistically significant. This study suggests that this animal model may be useful for studying the effect of dietary factors on intestinal growth and maturation, separating the direct effect of diet from systemic effect on the intestine.

  • PDF

A Longitudinal Study of Social Enterprises' Performances (사회적기업 성과의 종단적 유형화)

  • Kwon, Soil;Cho, Sangmi
    • Korean Journal of Social Welfare Studies
    • /
    • v.49 no.3
    • /
    • pp.209-245
    • /
    • 2018
  • In this study, various performance types, the combinations of the performance types for growth were investigated to suggest viable policy recommendations for the sustainable growth of social enterprises. The data of the economic and social performance of social enterprises from 2011 to 2016 were obtained and the changes were investigated. Among total of 235 social enterprises that participated in Cho et al, 2011, the research subjects were 164 social enterprises, which were still being operated in March, 2018. The performance of 6 years, since 2011, was surveyed, and total of 104(recovery factor: 69.8%) of social enterprises were analyzed using the growth mixture model, cross tabulation. First of the results, the latent trajectory classes of sales, which are of economic performance, were investigated through the analysis of growth mixture model. The optimal model including three latent classes was adopted. The three latent classes were named as 'mature sales type', 'growing sales type', and 'average sales type'. Second, the latent trajectory classes of employment rate, which are of social performance, were investigated. The optimal model including three latent classes was adopted. The three latent classes were named as 'average employment type', 'declining employment type', and 'increasing employment type'. Third, cluster in $3{\times}3$ tabulation, which is a distribution of the latent trajectory classes of social performance based on the latent trajectory classes of economic performance of social enterprises, was looked into.

A Study on the Kernel Formation & Development for Lean Burn and EGR Engine (희박연소 및 EGR 엔진에서 초기 화염액 생성 및 성장에 관한 연구)

  • 송정훈;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.24-33
    • /
    • 1999
  • This paper investigate the effects of the variations of engine operation condition in the flame kernel formation and developmnet . A model for calculating the initial kernel development in spark ignition engines is formualted. It considered input of electrical energy, combustion energy release and heat transfer to the spark plyg, cylinder head, and unburned mixture. The model also takes into accounts strain rate of initial kernel and residual gas fraction. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy and turbulent flame expansion. Flame kernel development also influenced by engine operating conditions, for example, EGR rate, air-fuel ration and intake manifold pressure.

  • PDF

Evolution of China's Economy and Monetary Policy: An Empirical Evaluation Using a TVP-VAR Model

  • Kim, Seewon
    • East Asian Economic Review
    • /
    • v.25 no.1
    • /
    • pp.73-97
    • /
    • 2021
  • China has experienced many structural changes in the process of economic development over the past three decades. Using a time-varying parameter VAR model with stochastic volatility and mixture innovations, this study investigates whether such structural changes in, especially tools and operational aims of monetary policy, affect the monetary transmission mechanism. We find that impulse responses of output growth and inflation to monetary shocks have substantially increased and then reversed to decrease around 2005-2006. This time variation is mainly caused by changes in the monetary transmission mechanism, i.e., the manner in which main macroeconomic variables respond to policy shocks, rather than by changes in volatilities of exogenous shocks. The result implies that aggressive monetary policy to facilitate economic growth in the developing economies may be legitimized, unless it causes inflation seriously.

Object Detection Based on Deep Learning Model for Two Stage Tracking with Pest Behavior Patterns in Soybean (Glycine max (L.) Merr.)

  • Yu-Hyeon Park;Junyong Song;Sang-Gyu Kim ;Tae-Hwan Jun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.89-89
    • /
    • 2022
  • Soybean (Glycine max (L.) Merr.) is a representative food resource. To preserve the integrity of soybean, it is necessary to protect soybean yield and seed quality from threats of various pests and diseases. Riptortus pedestris is a well-known insect pest that causes the greatest loss of soybean yield in South Korea. This pest not only directly reduces yields but also causes disorders and diseases in plant growth. Unfortunately, no resistant soybean resources have been reported. Therefore, it is necessary to identify the distribution and movement of Riptortus pedestris at an early stage to reduce the damage caused by insect pests. Conventionally, the human eye has performed the diagnosis of agronomic traits related to pest outbreaks. However, due to human vision's subjectivity and impermanence, it is time-consuming, requires the assistance of specialists, and is labor-intensive. Therefore, the responses and behavior patterns of Riptortus pedestris to the scent of mixture R were visualized with a 3D model through the perspective of artificial intelligence. The movement patterns of Riptortus pedestris was analyzed by using time-series image data. In addition, classification was performed through visual analysis based on a deep learning model. In the object tracking, implemented using the YOLO series model, the path of the movement of pests shows a negative reaction to a mixture Rina video scene. As a result of 3D modeling using the x, y, and z-axis of the tracked objects, 80% of the subjects showed behavioral patterns consistent with the treatment of mixture R. In addition, these studies are being conducted in the soybean field and it will be possible to preserve the yield of soybeans through the application of a pest control platform to the early stage of soybeans.

  • PDF

Development and Validation of Predictive Models of Esherichia coli O157:H7 Growth in Paprika (파프리카에서 병원성 대장균의 성장예측 모델 개발 및 검증)

  • Yun, Hyejeong;Kim, Juhui;Park, Kyeonghun;Ryu, Kyoung-Yul;Kim, Byung Seok
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.168-173
    • /
    • 2013
  • This study was carried out to develop and validate predictive models of E. coli O157:H7 growth. Growth data of E. coli O157:H7 in Paprika were collected at 12, 24, 30 and $36^{\circ}C$. The population increased into 3.0 to 3.8 log10 CFU/g within 4 days, then continued to increase at a slower rate through 10 days of storage at $12^{\circ}C$. The lag time (LT) and maximum specific growth rate (SGR) obtained from each primary model was then modeled as a function of temperature using Davey and square root equations, respectively. For interpolation of performance evaluation, growth data for a mixture of E. coli O157:H7 were collected at time intervals in paprika incubated at the different temperatures, which was not used in model development. Results of model performance for interpolation data demonstrated that induced secondary models showed acceptable goodness of fit. Relative errors in the LT and SGR model for interpolation data (18 and $27^{\circ}C$) was 100%, which show acceptable goodness of fit and validated for interpolation. The primary and secondary models developed in this study can be used to establish tertiary models to quantify the effects of temperature on the growth of E. coli O157:H7 in paprika.

Evaluation of Salmonella Growth at Low Concentrations of NaNO2 and NaCl in Processed Meat Products Using Probabilistic Model

  • Gwak, E.;Lee, H.;Lee, S.;Oh, M-H.;Park, B-Y.;Ha, J.;Lee, J.;Kim, S.;Yoon, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.1013-1021
    • /
    • 2016
  • This study developed probabilistic models to predict Salmonella growth in processed meat products formulated with varying concentrations of NaCl and $NaNO_2$. A five-strain mixture of Salmonella was inoculated in nutrient broth supplemented with NaCl (0%, 0.25%, 0.5%, 0.75%, 0.5%, 1.0%, 1.25%, and 1.75%) and $NaNO_2$ (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm). The inoculated samples were then incubated under aerobic and anaerobic conditions at $4^{\circ}C$, $7^{\circ}C$, $10^{\circ}C$, $12^{\circ}C$, and $15^{\circ}C$ for up to 60 days. Growth (assigned the value of 1) or no growth (assigned the value of 0) for each combination was evaluated by turbidity. These growth response data were analyzed with a logistic regression to evaluate the effect of NaCl and $NaNO_2$ on Salmonella growth. The results from the developed model were compared to the observed data obtained from the frankfurters to evaluate the performance of the model. Results from the developed model showed that a single application of $NaNO_2$ at low concentrations did not inhibit Salmonella growth, whereas NaCl significantly (p<0.05) inhibited Salmonella growth at $10^{\circ}C$, $12^{\circ}C$, and $15^{\circ}C$, regardless of the presence of oxygen. At $4^{\circ}C$ and $7^{\circ}C$, Salmonella growth was not observed in either aerobic or anaerobic conditions. When $NaNO_2$ was combined with NaCl, the probability of Salmonella growth decreased. The validation value confirmed that the performance of the developed model was appropriate. This study indicates that the developed probabilistic models should be useful for describing the combinational effect of $NaNO_2$ and NaCl on inhibiting Salmonella growth in processed meat products.

Natural Convection During Directional Solidification of a Binary Mixture (이성분 혼합액의 방향성 응고에서 자연 대류)

  • Hwang, In Gook;Choi, Chang Kyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.174-178
    • /
    • 2009
  • A mushy layer of dendritic crystals is often formed during solidification of a binary mixture. Natural convection in the mushy layer is analyzed by using the propagation theory we have developed. The critical Rayleigh numbers for the onset of convection are evaluated numerically using the self-similar stability equations based on Emms and Fowler's model. The present results approach those from quasi-static stability analysis in the limit of a large superheat or a small growth rate of the mushy layer.

Holographic Polymer-Dispersed Liquid Crystals and Polymeric Photonic Crystals Formed by Holographic Photolithography

  • Kyu Thein;Meng Scott;Duran Hatice;Nanjundiah Kumar;Yandek Gregory R.
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.155-165
    • /
    • 2006
  • The present article describes the experimental and theoretical observations on the formation of holographic, polymer-dispersed, liquid crystals and electrically switchable, photonic crystals. A phase diagram of the starting mixture of nematic liquid crystal and photo-reactive triacrylate monomer was established by means of differential scanning calorimetry (DSC) and cloud point measurement. Photolithographic patterns were imprinted on the starting mixture of LC/triacrylate via multi-beam interference. A similar study was extended to a dendrimer/photocurative mixture as well as to a single component system (tetra-acrylate). Theoretical modeling and numerical simulation were carried out based on the combination of Flory-Huggins free energy of mixing and Maier-Saupe free energy of nematic ordering. The combined free energy densities were incorporated into the time-dependent Ginzburg-Landau (Model C) equations coupled with the photopolymerization rate equation to elucidate the spatio-temporal structure growth. The 2-D photonic structures thus simulated were consistent with the experimental observations. Furthermore, 3-D simulation was performed to guide the fabrication of assorted photonic crystals under various beam-geometries. Electro-optical performance such as diffraction efficiency was evaluated during the pattern photopolymerization process and also as a function of driving voltage.

Genomic partitioning of growth traits using a high-density single nucleotide polymorphism array in Hanwoo (Korean cattle)

  • Park, Mi Na;Seo, Dongwon;Chung, Ki-Yong;Lee, Soo-Hyun;Chung, Yoon-Ji;Lee, Hyo-Jun;Lee, Jun-Heon;Park, Byoungho;Choi, Tae-Jeong;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1558-1565
    • /
    • 2020
  • Objective: The objective of this study was to characterize the number of loci affecting growth traits and the distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic partitioning, and hierarchical Bayesian mixture models. Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori information included setting the fixed additive genetic variance to a pre-specified value; the first mixture component was set to zero, the second to 0.0001×σ2g, the third 0.001×σ2g, and the fourth to 0.01×σ2g. BayesR fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed distribution. Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic region explained approximately 10% of the variance against total additive genetic variance and body weight heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained only 0.04% to 0.5% of the genetic variance Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small effects on growth traits at different ages were also identified.