• Title/Summary/Keyword: growth controls

Search Result 675, Processing Time 0.029 seconds

Characteristics of fruiting body growth according to alternative substrates of king oyster mushroom (Pleurotus eryngii) (큰느타리 대체배지 종류에 따른 자실체 생육 특성)

  • Hye-Sung, Park;Gyong-Jin, Min;Eun-Ji, Lee;Tai Moon, Ha
    • Journal of Mushroom
    • /
    • v.20 no.4
    • /
    • pp.274-278
    • /
    • 2022
  • The present study aimed at selecting a cost-effective substrate for king oyster mushroom based on the growth characteristics of fruiting body for use as a basic resource to ensure stable production on farms. Compositional analysis of substrates manufactured with different materials in each process revealed that the total carbon content was 42.24-48.22% higher and the total nitrogen content was 1.7-2.29% higher in the processed lot than in the control (i.e., substrate used by the farmhouse; 40.86% and 1.39%, respectively). Meanwhile, the carbon-to-nitrogen ratio was the highest in the control (27.9% vs. 19.12-27.88% in the processed lot). When cultured for 28 days, the mycelium growth was 11.5 and 11.3 mm in substrates 1 and 6, respectively, indicating the fastest growth; meanwhile, the values were 10.1-10.3 mm in the control and substrate 11, showing a similar tendency. Mycelial density did not differ significantly among the processed lots. Yield per bottle was higher in substrates 8 (205.95 g/bottle), 7 (178.51 g/bottle), and 11 (170.63 g/bottle) than in the control (152.2 g/bottle). Fruiting body quality was comparable to controls in all processed lots. Overall, economic effects, such as substrate material prices, should be analyzed, and stability evaluations, such as residual pesticide and harmful microorganisms, should be undertaken along with further detailed examination to ensure safe and stable production on farms.

Growth-promoting effect on Tricholoma matsutake mycelium by Terrabacteria isolated from pine mushroom habitats in Korea (국내 송이 자생지에서 분리된 Terrabacteria에 의한 송이균사체 생장촉진 효과)

  • Doo-Ho Choi;Jae-Gu Han;Kang-Hyo Lee;Gi-Hong An
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.190-193
    • /
    • 2023
  • To cultivate pine mushroom (Tricholoma matsutake) artificially, co-cultivation with microorganisms has been introduced. Here, experiments were performed to assess the growth-promoting effect of bacteria on T. matsutake mycelia. Bacteria were isolated from soil samples collected in Yangyang County, Korea. Four of the bacterial isolates (Y22_B06, Y22_B11, Y22_B18, and Y22_B22) exhibited a growth-promoting effect on T. matsutake mycelia (154.67%, 125.91%, 134.06%, and 158.28%, respectively). To analyze the characteristics of the bacteria, especially the antifungal activity, 𝛼-amylase and cellulase activity assays were performed. In comparison with the controls, the isolated bacteria exhibited low 𝛼-amylase and cellulase activity. 16S rRNA gene sequencing was performed to identify the four bacterial isolates. The isolates belonged to the Terrabacteria group and were identified as Microbacterium paraoxydans, Paenibacillus castaneae, Peribacillus frigoritolerans, and P. butanolivorans. These bacterial isolates are expected to have contributed to the growth promotion of T. matsutake mycelia and the artificial cultivation of T. matsutake.

Allelopathic Effect of Aqueous Extract of Ganghwa Mugwort (Artemisia spp.) Vegetables and HPLC Aanalysis of Allelochemicals (강화약쑥 수용성 추출물의 식물 타감효과 및 HPLC에 의한 타감물질 분석 연구)

  • Lee, Joo-Hwa;Byeon, Ji-Hui;Kim, Moung-Su;Park, Chun-Geon;Park, Chung-Berm;Cha, Sun-Woo;Lee, Jeong-Hoon;Cho, Joon-Hyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.4
    • /
    • pp.737-752
    • /
    • 2013
  • This study was conducted to evaluate the allelopathic effect of aqueous extract of Ganghwa domestic mugwort (Artemisia spp.) on vegetables and its related allelo-chemicals. When the receptor vegetables, such as Chinese cabbage, lettuce, and red radish, were treated with aqueous extract obtained from Sajabalssuk (A. $sp^*I$), Ssajuarissuk (A. $sp^*II$) or Ssajarissuk (A. $sp^*III$), their germination rate, leaf number, plant height, and root length were restricted with increasing concentration of aqueous extract. Allelopathic effect was the highest in radish, than lettuce and Chinese cabbage in order. The growth of topplant were more inhibited then root growth observing in restriction of plant height, root length, and chlorophyll contents. The plant height, the root length of red radish were 53.3 and 61.2% and their fresh weights were 19.8 and 26.4% compared to those of controls, respectively. A. $sp^*III$ showed the highest allelopathic effect among the donor plants. In HPLC analysis, 7 phenol compounds were identified in A. $sp^*I$ and A. $sp^*II$, and, in A. $sp^*III$, and hydroxybenzoic acid and phenylacetic acid were further identified as allelochemicals. It is considered that their plant growths were variously inhibited by the amounts and types of allelochemicals in aqueous extracts. To increase the productivity of farm land after cultivation of mugwort, these results can be useful to select the following field crops.

Transforming Growth Factor Beta-1 C-509T Polymorphism and Cancer Risk: A Meta-analysis of 55 Case-control Studies

  • Liu, Yang;Lin, Xian-Fan;Lin, Chun-Jing;Jin, Si-Si;Wu, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4683-4688
    • /
    • 2012
  • Aim: To investigate the association of transforming growth factor-beta 1 (TGF-${\beta}1$) C-509T polymorphism and susceptibility to cancer by means of meta-analysis. Methods: An extensive search was performed to identify eligible case-control studies investigating such a link. The strength of the association between TGF-${\beta}1$ C-509T polymorphism and cancer risk was assessed by pooled odds ratios (ORs) and 95%confidence intervals (95%CIs) in fixed or random effects models. Results: 55 published case-control studies with a total number of 21,639 cases and 28,460 controls were included. Overall, there was no association between TGF-${\beta}1$ C-509T and cancer risk in all genetic comparison models (TT vs. CC: OR=1.01, 95%CI=0.89-1.15; T vs. C: OR=1.01, 95%CI=0.94-1.07). However, a stratified analysis by cancer type indicated -509 T allele was significantly associated with decreased risk of colorectal cancer (CRC) (TT vs. CT/CC: OR=0.85, 95%CI=0.76-0.95), especially for Caucasians (TT vs. CT/CC: OR=0.83, 95%CI=0.71-0.98) and for population-based studies (TT vs. CT/CC: OR=0.78, 95%CI=0.68-0.89). Conclusion: This meta-analysis suggested that TGF-${\beta}1$ C-509T polymorphism might contribute to a decreased risk on colorectal cancer susceptibility, especially for Caucasians.

Effect of Trichostatin A on CNE2 Nasopharyngeal Carcinoma Cells - Genome-wide DNA Methylation Alteration

  • Yang, Xiao-Li;Zhang, Cheng-Dong;Wu, Hua-Yu;Wu, Yong-Hu;Zhang, Yue-Ning;Qin, Meng-Bin;Wu, Hua;Liu, Xiao-Chun;Lina, Xing;Lu, Shao-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4663-4670
    • /
    • 2014
  • Trichostatin A (TSA) is a histone deacetylase (HDAC) inhibitor. We here investigated its effects on proliferation and apoptosis of the CNE2 carcinoma cell line, and attempted to establish genome-wide DNA methylation alteration due to differentially histone acetylation status. After cells were treated by TSA, the inhibitory rate of cell proliferation was examined with a CCK8 kit, and cell apoptosis was determined by flow cytometry. Compared to control, TSA inhibited CNE2 cell growth and induced apoptosis. Furthermore, TSA was found to induce genome-wide methylation alteration as assessed by genome-wide methylation array. Overall DNA methylation level of cells treated with TSA was higher than in controls. Function and pathway analysis revealed that many genes with methylation alteration were involved in key biological roles, such as apoptosis and cell proliferation. Three genes (DAP3, HSPB1 and CLDN) were independently confirmed by quantitative real-time PCR. Finally, we conclude that TSA inhibits CNE2 cell growth and induces apoptosis in vitro involving genome-wide DNA methylation alteration, so that it has promising application prospects in treatment of NPC in vivo. Although many unreported hypermethylated/hypomethylated genes should be further analyzed and validated, the pointers to new biomarkers and therapeutic strategies in the treatment of NPC should be stressed.

IN VITRO STEM CELL SUPPRESSION OF MACROPHAGE INFLAMMATORY $PROTEIN-1{\alpha}$ (Macrophage Inflammatory $Protein-1{\alpha}$의 조혈간세포(造血幹細胞) 억제 작용에 관한 실험적 연구)

  • Suh, Ki-Hang;Ko, Seung-O;Shin, Hyo-Keun;Kim, Oh-Whan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.2
    • /
    • pp.286-297
    • /
    • 1996
  • The proliferation of bone marrow stem cell compartment is thought to be under both positive and negative controls by cytokines and colony stimulation factors. Macrophage inflammatory $protein-1{\alpha}(MIP-1{\alpha})$ has been assessed for its potential to protect hematopoietic stem cells from cytotoxic effects of a cycle-specific antineoplastic agents. We have tested the ability of $MIP-1{\alpha}$ to suppress the proliferation of stem cell line Du.528.101 in variety of active status by using $[^{3}H]-thymidine$ incorporation test. The results were as follows. 1. The effect of $MIP-1{\alpha}$ on steady-state Du.528.101 cell represented the cell growth suppression at the concentration of 10, 50, 100nM of $MIP-1{\alpha}$(P<0.001). 2. $MIP-1{\alpha}$ stimulated the proliferation of Du.528.101 cells previously treated with IL-1 at the concentration of 5, 50nM of $MIP-1{\alpha}$(P<0.01). 3. The suppression effect of MIP-1 on Du.528.101 cells at the concentration of 5, 50nM was shown when cells were treated with $MIP-1{\alpha}$ before activation with $IL-1{\beta}(P<0.01)$. 4. The growth rate of synchronized cells were slower than that of non-synchronized ones, and $MIP-1{\alpha}$ represented the similar suppression effect on both synchronized and non-synchronized cells.

  • PDF

Transgenic Alteration of Sow Milk

  • Wheeler, Matthew B.
    • Proceedings of the KSAR Conference
    • /
    • 2000.10a
    • /
    • pp.1-2
    • /
    • 2000
  • High production of milk and its components are necessary to allow maximal growth of developing piglets. In this study, transgenic pigs were produced containing the $\alpha$-lactalbumin gene, whose product is a potential limiting component in the production of milk. Two lines of transgenic pigs were produced to analyze the effects that overproduction of the milk protein $\alpha$-lactalbumin may have on milk production and piglet growth. Transgenic pigs were produced through microinjection of the bovine $\alpha$-lactalbumin gene. The gene construct contained 2.0 kb of 5 flanking region, the 2.0 kb coding region and 329 bp of 3 flanking region. Sows hemizygous for the transgene produced as much as 0.9 g of bovine $\alpha$-lactalbumin per liter of pig milk. The production of the bovine protein caused approximately a 50 % increase in the total $\alpha$-lactalbumin concentration in pig milk throughout lactation. The concentration of bovine $\alpha$-lactalbumin was highest on day 0 and 5 of lactation and decreased as lactation progressed. The ratio of bovine to porcine $\alpha$-lactalbumin changed during the sow's lactation. This ratio was 4.3 to 1 on day 0 of lactation, but by day 20 of lactation the ratio was 0.43 to 1. This suggested that the bovine transgene and the endogenous porcine gene were under slightly different control mechanisms. The higher level of total $\alpha$-lactalbumin present on day 0 of lactation was correlated with higher lactose percentage on day 0 in transgenic sows (3.8 %) as compared to controls (2.6 %) (P < 0.01). Although there was also a trend for higher lactose percentage in transgenic sows on day 5 and 10 of lactation, no significant differences were observed. These data suggest that $\alpha$-lactalbumin is limiting early in lactation of swine. Furthermore, higher concentrations of $\alpha$-lactalbumin early in lactation may boost milk output.

  • PDF

Effect of GeO2 on embryo development and photosynthesis in Fucus vesiculosus (Phaeophyceae)

  • Tarakhovskaya, Elena R.;Kang, Eun-Ju;Kim, Kwang-Young;Garbary, David J.
    • ALGAE
    • /
    • v.27 no.2
    • /
    • pp.125-134
    • /
    • 2012
  • Germanium dioxide ($GeO_2$) has been used for many years in the cultivation of red and green algae as a means of controlling the growth of diatoms. Brown algae are sensitive to $GeO_2$, however, the basis of this sensitivity has not been characterized. Here we use embryos of $Fucus$ $vesiculosus$ to investigate morphological and physiological impacts of $GeO_2$ toxicity. Morphometric features of embryos were measured microscopically, and physiological features were determined using pulse amplitude modulated (PAM) fluorometry. At 5 mg $L^{-1}$ $GeO_2$, embryos grew slower than controls and developed growth abnormalities. After 24 h, initial zygote divisions were often oblique rather than transverse. Rhizoids had inflated tips in $GeO_2$ and were less branched, and apical hairs were deformed, with irregularly aligned, spheroidal cells. Minimum fluorescence ($F_0$) showed minor differences over the 10 days experiment, and pigment levels (chlorophylls $a$, $c$ and total carotenoids) showed no difference after 10 days. Optimum quantum yield increased from ca. 0.52 at 24 h to 0.67 at 5 days, and $GeO_2$-treated embryos had higher mean values (significant at 3 and 5 days). Optimum quantum yield of photosystem II (${\Phi}_{PSII}$) was stable in control thalli after 5 days, but declined significantly in $GeO_2$. Addition of silica (as $SiO_2$) did not reverse the effects of $GeO_2$. These results suggest that $GeO_2$ toxicity in brown algae is associated with negative impacts at the cytological level rather than metabolic impacts associated with photosynthesis.

Transcription Analysis of Daptomyc in Biosynthetic Genesin Streptomyces roseosporus

  • Rhee, Ki-Hyeong;Davies, Julian
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1841-1848
    • /
    • 2006
  • Insights into gene expression have the potential for improvement of antibiotic yield and the development of robust production hosts for use in recombinant biomolecule production. $Cubicin^{TM}$ (daptomycin for injection) is a recently approved antibiotic active against many Gram(+) pathogens, including those resistant to methicillin, vancomycin, and fluoroquinolones. Daptomycin is produced as a secondary metabolite by Streptomyces roseosporus. A 128 kb region of DNA including the daptomycin biosynthetic gene cluster (dpt) has been cloned. and sequenced. Using a selected array of nucleic acid probes representing this region, we compared the expression levels of the dpt genes between S. roseosporus wild-type (WT) and derived S. roseosporus high-producer of daptomycin (HP). We observed that the majority of the biosynthetic genes were upregulated in HP compared with WT; a total of 12 genes, including those encoding daptomycin synthetase, showed consistently and significantly higher expression levels, at least 5-fold, in HP compared with WT. In contrast, some genes, flanking the dpt cluster, were expressed at higher levels in the WT strain. The expression of housekeeping genes such as S. roseosporus rpsL, rpsG, and 16S (positive controls) and presumptive intergenic regions in the dpt cluster (negative control) were identical in the two strains. In addition, we compared transcription during the early, mid-log, and early-stationary phases of growth in the HP strain. The same set of genes was upregulated and downregulated under all conditions examined; housekeeping genes showed no relative change in expression level over the periods of growth tested. Analyses of this type would be of value in studies of strain improvement and also for the identification of gene regulation processes that are important for secondary metabolite production.

Consumption of Oxidized Soybean Oil Increased Intestinal Oxidative Stress and Affected Intestinal Immune Variables in Yellow-feathered Broilers

  • Liang, Fangfang;Jiang, Shouqun;Mo, Yi;Zhou, Guilian;Yang, Lin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1194-1201
    • /
    • 2015
  • This study investigated the effect of oxidized soybean oil in the diet of young chickens on growth performance and intestinal oxidative stress, and indices of intestinal immune function. Corn-soybean-based diets containing 2% mixtures of fresh and oxidized soybean oil provided 6 levels (0.15, 1.01, 3.14, 4.95, 7.05, and $8.97meqO_2/kg$) of peroxide value (POV) in the diets. Each dietary treatment, fed for 22 d, had 6 replicates, each containing 30 birds (n = 1,080). Increasing POV levels reduced average daily feed intake (ADFI) of the broilers during d 1 to 10, body weight and average daily gain at d 22 but did not affect overall ADFI. Concentrations of malondialdehyde (MDA) increased in plasma and jejunum as POV increased but total antioxidative capacity (T-AOC) declined in plasma and jejunum. Catalase (CAT) activity declined in plasma and jejunum as did plasma glutathione S-transferase (GST). Effects were apparent at POV exceeding $3.14meqO_2/kg$ for early ADFI and MDA in jejunum, and POV exceeding $1.01meqO_2/kg$ for CAT in plasma and jejunum, GST in plasma and T-AOC in jejunum. Relative jejunal abundance of nuclear factor kappa B ($NF-{\kappa}B$) P50 and $NF-{\kappa}B$ P65 increased as dietary POV increased. Increasing POV levels reduced the jejunal concentrations of secretory immunoglobulin A and cluster of differentiation (CD) 4 and CD8 molecules with differences from controls apparent at dietary POV of 3.14 to $4.95meqO_2/kg$. These findings indicated that growth performance, feed intake, and the local immune system of the small intestine were compromised by oxidative stress when young broilers were fed moderately oxidized soybean oil.