• Title/Summary/Keyword: growth behavior

Search Result 2,662, Processing Time 0.038 seconds

Bioleaching Behavior of Cu and Co by Aspergillus Niger Strains from Molasses Culture (당밀배지에서 Aspergillus niger 균주에 의한 구리 및 코발트의 미생물 침출 거동)

  • Ahn, Hyo-Jin;Ahn, Jae-Woo;Ryu, Seong-Hyung
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • For the recovery of Co and Cu, bioleaching behavior of Co, Cu, Fe, Mg, Al by Aspergillus niger culture from the molasses growth medium was investigated. Series of leaching tests have been conducted by varying Aspergillus niger's type, molasses concentration in the growth medium, pulp density and reaction time. The results showed that increase of the molasses concentration in the growth medium from 1% to 4% increased the leaching percentage of Co and Cu and the optimal molesses concentration was found to be 4% in the growth medium. Maxinum 90% of Co and 70% of Cu were dissolved from the leaching test at the 10 g/L pulp density, 4 % of molasses concentration in the growth medium after 21 days by Aspergillus niger KCTC 6985. But in case of using Aspergillus niger KCTC 6144, the maxium leaching percentage of Co and Cu was reached 90% respectively at a pulp density 5 g/L and 4% of molasses concentration.

A Study on Fatigue Crack Retardation Using NDT Test in a Hybrid Composite Material Reinforced with a CFRP (CFRP로 보강한 하이브리드 복합재료의 비파괴검사법을 이용한 피로균열 지연의 연구)

  • 윤한기;박원조;허정원
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 1999
  • New hybrid composite material CPAL(Carbon Patched ALuminum alloy), an Al2024-T3 plate doubleside reinforced with carbon/epoxy laminates were made. Fatigue crack growth tests were carried out at R=0.2, 0.5 in the CPAL specimens. The retardation mechanism and behavior of fatigue crack growth were examined basing on investigation of the crack and the delamination using a X-Ray and a ultrasonic C-Scan. The fatigue crack growth rates of CPAL specimens were remarkedly retarded compared to that of the Al2024-T3 specimen. The retardations amounts of the fatigue crack growth rates get higher in $0^{\circ}$/$90^{\circ}$ CPAL specimen than in $\pm$$45^{\circ}$ CPAL specimen, and get higher at R=0.2 than at R=0.5. The retardation of fatigue crack growth rates in CPAL specimen was generated by the crack bridging mechanism, that is the behavior that the fibers in CFRP layers decrease the COD in the Al2024-T3 plate.

  • PDF

The Basic Study on Fatigue Crack Growth Behavior of SiC Whisker Reinforced Aluminium 6061 Composite Material (SiC 휘스커 보강 Al 6061 복합재료의 피로균열진전 특성에 관한 기초 연구)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2374-2385
    • /
    • 1994
  • SiCw/Al composite material is especially attractive because of their superior specific strength, specific stiffness, corrosion fatigue resistance, creep resistance, and wear resistance compared with the corresponding wrought Al alloy. In this study, Fatigue crack growth behavior and fatigue crack path morphology(FCPM) of SiC whisker reinforced Al 6061 alloy with 25% SiC volume fraction and Al 6061 allay were performed. Result of the fatigue crack growth test sgiwed that fatigue crack growth rate of SiCw/Al 6061 composite was slower than that of Al 6061 matrix therefore it was confirmed that Sic whisker have a excellent fatigue resistance. And Al 6061 matrix had only FCPM perpendicular to loading direction. On the other hand SiCw/Al 6061 composite had three types in fatigue crack path morphology. First type is that both sides FCPM of artificial notch are perpendicular to loading direction. Second type is that a FCPM in artifical notch has slant angle to loading direction and the other side FCPM is perpendicular to loading direction. Third type is that both sides FCPM of notch have slant angle to loading direction. It was considered that this kinds of phenomena were due to non-uniform distribution of SiC whisker and confirmed by SEM observation for fracture mechanism study.

Fatigue Crack Growth Behavior of Powder Metallurgical Nickel-based Superalloy using DCPD Method at Elevated Temperature (DCPD법을 이용한 분말야금 니켈기 초내열합금의 고온 피로균열진전거동)

  • Na, Seonghyeon;Oh, Kwangkeun;Kim, Hongkyu;Kim, Donghoon;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.11-17
    • /
    • 2016
  • Powder metallurgy nickel based superalloy has been used in a high temperature part of turbine engine for airplane. The fatigue crack growth behavior was investigated using CT specimens for the materials at room temperature(R.T.), $600^{\circ}C$ and $700^{\circ}C$. The direct current potential drop(DCPD) method suggested by ASTM E647 was used to measure the crack length during fatigue crack growth at various stress ratios. The fatigue crack growth rate at R=0.5 was faster than that at R=0.1 for all temperature conditions and increased with the increase of stress ratio and temperature. Fractography was conducted for analysis of fracture mechanism.

Study on the Sintering Behavior and Abnormal Grain Growth with Ba/Ti ratio variation of $BaTiO_3$ Ceramics ($BaTiO_3$세라믹스에서 Ba/Ti비 변화에 따른 소결거동 및 비정상 입자성장에 대한 연구)

  • Choi, Jong-Sun;Kim, Ho-Gi
    • Korean Journal of Materials Research
    • /
    • v.1 no.1
    • /
    • pp.37-45
    • /
    • 1991
  • In order to control the microstructures, the sintering behavior and abnormal grain growth with Ba/Ti ratio variation of $BaTiO_3$were investigated. The $BaTiO_3$powders used in this study were prepared by conventional calcination of $BaCO_3$ and $TiO_2$. The onset temperatures of the sintering were lowered and the densification was enhanced with increasing amounts of $TiO_2$ excess. These results are because of decrease of calcined particle sizes. A eutectic melt above temperature of $1320^{\circ}C$ did not assist the densification. Grain growth was strongly inhibited with increasing amounts of $TiO_2$ excess. The inhibition of grain growth caused abnormal grain growth due to inhomogeneous distribution of Ti-rich second phase.

  • PDF

Crack growth and cracking behavior of Alloy 600/182 and Alloy 690/152 welds in simulated PWR primary water

  • Lim, Yun Soo;Kim, Dong Jin;Kim, Sung Woo;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.228-237
    • /
    • 2019
  • The crack growth responses of as-received and as-welded Alloy 600/182 and Alloy 690/152 welds to constant loading were measured by a direct current potential drop method using compact tension specimens in primary water at $325^{\circ}C$ simulating the normal operating conditions of a nuclear power plant. The as-received Alloy 600 showed crack growth rates (CGRs) between $9.6{\times}10^{-9}mm/s$ and $3.8{\times}10^{-8}mm/s$, and the as-welded Alloy 182 had CGRs between $7.9{\times}10^{-8}mm/s$ and $7.5{\times}10^{-7}mm/s$ within the range of the applied loadings. These results indicate that Alloys 600 and 182 are susceptible to cracking. The average CGR of the as-welded Alloy 152 was found to be $2.8{\times}10^{-9}mm/s$. Therefore, Alloy 152 was proven to be highly resistant to cracking. The as-received Alloy 690 showed no crack growth even with an inhomogeneous banded microstructure. The cracking mode of Alloys 600 and 182 was an intergranular cracking; however, Alloy 152 was revealed to have a mixed (intergranular + transgranular) cracking mode. It appears that the Cr concentration and the microstructural features significantly affect the cracking resistance and the cracking behavior of Ni-base alloys in PWR primary water.

A study on fatigue crack growth with loading waveform and analysis method for all loading waveform at elevated temperature in SUS 304 stainless steel (SUS 304강의 하중파형에 따른 고온피로균열전파속도 및 전체하중파형의 평가방법의 연구)

  • 이상록;이학주;허정원;임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.122-130
    • /
    • 1992
  • The effect of loading waveform on elevated temperature low-cycle fatigue crack growth behavior in a SUS 304 stainless steel have been investigated under symmetrical trangular (fast-fast), trapezoidal and asymmetrical(fast-slow, slow-fast) waveforms at 650.deg. C. It was found that the crack growth rate in fast-slow loading waveform appeared to be higher a little and the crack growth rate in slow-fast loading waveform much higer than that in fast-fast loading waveform, and difference in crack growth rate between fast-show and slow-fast waveforms nearly didn't appear in the region of da/dN>10/sup -2/ The crack growth rate in the trapezoidal loading waveform with t/sub h/=500sec appeared to be faster than that in slow(500sec)-fast(1sec). In addition, parameter modified J-integral could be considered as useful parameter for fatigue crack growth rate in all waveforms. The result obtained are as follow. da/dN=4.91*10/sup -3/ (.DELTA. J/sub c/)/sup 0.565/.

  • PDF

Effect of Specimen Thickness on Fatigue Crack Growth (피로균열진전에 미치는 시편 두께의 영향)

  • 김재훈;김영균;윤인수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.79-86
    • /
    • 1998
  • The effect of specimen thickness on fatigue crack growth behavior has been carried out by compact tension specimens of thickness of 3mm, 10mm and 25mm for maraging steel and Al 7075-T6. The closure points were determined during the test by means of a clip-gage situated at the notch mouth. Specimen thickness have no apparent influence on the fatigue crack growth rate of maraging steel, but the crack growth rate of 25mm thickness specimen for Al 7075-T6 is faster than that of 3 and 10mm specimens. The difference of crack growth rates can be successfully explained by considering the different stress state of plane strain and plain stress due to the variation of specimen thickness. Also the crack opening ratio of 25mm specimen is greater than those of 3 and 10mm specimens. When a side groove is introduced in a 10mm specimen, the crack growth rate is approximately similar to that of 25mm specimen. The effective thickness expression of $B_e=B_o-(B_o-B_N)^2B_o$ is the most appropriate to evaluate the crack growth rate of side-grooved specimen. Fatigue crack growth rates can be well described by $\Delta K_{eff}$ of the crack closure points in regardless of all thickness and side-grooved specimens.

  • PDF

The Effect on Fatigue Crack Growth due to Omitting Low-amplitude Loads from Variable Amplitude Loading (변동하중에서 미소하중의 제거가 균열진전에 미치는 영향)

  • Shim, D.S.;Lee, S.H.;Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests were conducted on 2124-T851 aluminum alloy specimens. Three test spectra were generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results were compared with the data obtained from the flight-simulation loading. The experimental results show that the ranges equal to or smaller than 5% of the maximum load do not contribute to crack growth behavior because these are below the initial stress intensity factor range. Omitting these from the flight-simulation loading, test time can be reduced by 54%. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decreased, and crack growth curve deviated from the crack growth data under the flight-simulation loading because loading cycles above fatigue fracture toughness were omitted.

  • PDF

Experimental study on fatigue crack propagation of fiber metal laminates

  • Xie, Zonghong;Peng, Fei;Zhao, Tianjiao
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.145-157
    • /
    • 2014
  • This study aimed to investigate the fatigue crack growth behavior of a kind of fiber metal laminates (FML) under four different stress levels. The FML specimen consists of three 2024-T3 aluminum alloy sheets and two layers of glass/epoxy composite lamina. Tensile-tensile cyclic fatigue tests were conducted on centrally notched specimen at four stress levels with various maximum values. A digital camera system was used to take photos of the propagating cracks on both sides of the specimens. Image processing software was adopted to accurately measure the length of the cracks on each photo. The test results show that: (1) a-N and da/dN-a curves of FML specimens can be divided into transient crack growth segment, steady state crack growth segment and accelerated crack growth segment; (2) compared to 2024-T3 aluminum alloy, the fatigue properties of FML are much better; (3) da/dN-${\Delta}K$ curves of FML specimens can be divided into fatigue crack growth rate decrease segment and fatigue crack growth rate increase segment; (3) the maximum stress level has a large influence on a-N, da/dN-a and da/dN-${\Delta}K$ curves of FML specimens; (4) the fatigue crack growth rate da/dN presents a nonlinear accelerated increasing trend to the maximum stress level; (5) the maximum stress level has an almost linear relationship with the stress intensity factor ${\Delta}K$.