• Title/Summary/Keyword: growing small animal

Search Result 74, Processing Time 0.024 seconds

Influence of methionine supplementation of growing diets enriched with lysine on feedlot performance and characteristics of digestion in Holstein steer calves

  • Torrentera, Noemi;Carrasco, Ramses;Salinas-Chavira, Jaime;Plascencia, Alejandro;Zinn, Richard A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • Objective: Two trials were conducted in order to examine the effects of level of supplemental methionine on productive performance, dietary energetic, plasma amino acid concentration, and digestive function. Methods: Dietary treatments consisted of a steam-flaked corn-based diet containing urea as the only source of supplemental nitrogen supplemented with no supplemental amino acid (control), or control plus 1.01% lysine and 0.032%, 0.064%, 0.096%, or 0.128% methionine. In Trial 1, 150 Holstein steer calves ($127{\pm}4.9kg$) were utilized to evaluate the influence of treatments on growth-performance, dietary energetic, plasma amino acid concentration during the first 112 days of growing period. During the initial 56-d period calves received the 5 experimental diets. During the subsequent 56-d period all calves were fed the control diet. Results: During the initial 56-d period, methionine supplementation increased (linear effect, p<0.01) plasma methionine. In the presence of supplemental lysine, increases on level of methionine in diet did not affect average daily gain. However, increased gain efficiency (quadratic effect, p = 0.03) and estimated dietary net energy (NE; linear effect, p = 0.05). Estimated metabolizable methionine supply was closely associated ($R^2=0.95$) with efficiency NE utilization for maintenance and gain. During the subsequent 56-d period, when all calves received the control diet (no amino acid supplementation), plasma amino acid concentrations and growth performance was not different among groups. However, the effects of methionine supplementation during the initial 56-period carried over, so that following a 56-d withdrawal of supplementation, the overall 112-d effects on gain efficiency (quadratic effect, p = 0.05) dietary NE (linear effect, $p{\leq}0.05$) remained appreciable. In Trial 2, 5 cannulated Holstein steers were used to evaluate treatment effects on characteristics of digestion and amino acid supply to the small intestine. There were no treatment effects on flow of dietary and microbial N to the small intestine. Postruminal N digestion increased (p = 0.04) with increasing level of supplemental methionine. Methionine supplementation linearly increased (p<0.01) duodenal flow of methionine. Likewise, lysine supplementation increased an average of 4.6% (p = 0.04) duodenal flow of lysine. In steers that received non-supplemented diet, observed intestinal amino acid supply were in good agreement with expected. Conclusion: We conclude that addition of rumen-protected methionine and lysine to diets may enhance gain efficiency and dietary energetics of growing Holstein calves. Observed amino acid supply to the small intestine were in good agreement with expected, supportive of NRC (2000, Level 1).

Growth in the Sultanate of Oman of Small Ruminants Given Date Byproducts-Urea Multinutrient Blocks

  • El Hag, M.G.;Al-Merza, M.A.;Al Salti, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.671-674
    • /
    • 2002
  • This study investigated the use of multinutrient blocks (MNB) composed of 35% date syrup, 35% date syrup byproducts, 10% date fronds, 7% urea, 7% cement and 6% common salt for growing small ruminants, as partial substitute for the roughage component of the diet (Rhodes grass hay) and its effect on feedlot performance and economics of feeding. Eight growing local Omani goats and 8 sheep (each about one year old) were used in this study. Mean body weights for goats and sheep (kg), respectively were $21.1{\pm}4.5$ and $25.5{\pm}4.1$. The goats and sheep were subdivided into two sub-groups of more or less equal body weights for each species. Each sub-group in both species was either fed on 0.5 kg concentrate+ad libitum Rhodes grass hay or the same diet+restricted hay (about 0.2 kg/head/day) and ad libitum amount of MNB. Sheep significantly (p<0.05) consumed greater amounts of MNB ($36{\pm}17$g/head/day) than goats ($6{\pm}2.5$ g/head/day). Feeding of the MNB was effective in sparing about 40% of the roughage Rhodes grass hay for goats (from 240 to 140 g) and about 42% for sheep (from 252 to 146 g) or approximately 100 g/head/day for both goats and sheep. This reduction (or sparing) in the consumption of Rhodes grass hay was coupled by an improvement in daily liveweight gain (g/head/day) in both goats (from 29 to 46 by 58.6%) and sheep (from 26 to 39 by 50%) and also by an improvement in the feed conversion efficiency (g feed/g gain) of both goats (from 25 to 13.8 by 45%) and sheep (from 28.7 to 17.2 by 40%). Cost of daily consumed feeds as well as cost/kg gain (or cost of meat) were both reduced due to feeding of MNB. They were both respectively reduced by 7.5% (from 53 Baisa/day to 49) and 38% (from 1,828 Baisa/kg to 1,140). It was economically viable to feed MNBs containing date by-products and urea to small ruminants in the Sultanate of Oman.

Effects of Xylanase Supplementation to Wheat-based Diet on the Performance and Nutrient Availability of Broiler Chickens

  • Chiang, Chia-Chun;Yu, Bi;Chiou, Peter Wen-Shyg
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1141-1146
    • /
    • 2005
  • A trial was conducted to evaluate the level of wheat substituted for corn in a traditional corn-soy diet and the xylanase supplementation effect on the growth performance and nutrient digestion of broiler chickens. This experiment was a randomized design with a 4${\times}$2 factorial arrangement with four levels of wheat substitution and two levels of enzyme inclusion in the diet. Wheat replaced 0, 25, 50 or 100% corn with or without 1 g/kg xylanase supplementation in iso-nitrogenous and iso-calorific experimental diets. The results showed that in the growing period, broilers attained the highest (p<0.05) body weight gain, feed intake, and relative small intestine weight when wheat was substituted at 25% for corn. The relative caecum weight increased (p<0.05) linearly with increasing levels of wheat substitution for corn. However, during the finishing period and entire experimental period from 0 to 6 weeks, no significant difference was shown in the growth performance among all treatments. Xylanase inclusion significantly improved the body weight gain, fat availability (p<0.01) and diet metabolisable energy (p<0.1) but decreased (p<0.05) the relative GI tract weight during the growing period. The digesta viscosity of 6-week old broilers was also decreased (p<0.05). It appears that wheat substituted for corn did not affect the growth performance, nutrient digestion, and the digesta viscosity of chickens. It is acceptable to completely substitute wheat for corn. Xylanase supplementation improved performance.

Comparative digestibility of nutrients and amino acids in high-fiber diets fed to crossbred barrows of Duroc boars crossed with Berkshire×Jiaxing and Landrace×Yorkshire

  • Zhao, Jinbiao;Wang, Qiuyun;Liu, Ling;Chen, Yiqiang;Jin, Aiming;Liu, Guoliang;Li, Kaizhen;Li, Defa;Lai, Changhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.721-728
    • /
    • 2018
  • Objective: This experiment was conducted to determine the differences in the apparent ileal (AID) and total tract digestibility (ATTD) of nutrients and indispensable amino acids (IAA) in high-fiber diets with wheat middlings, rice bran or alfalfa meal fed to Duroc${\times}$(Landrace${\times}$Yorkshire) (DLY) and Duroc${\times}$ (Berkshire${\times}$Jiaxing) (DBJ) growing barrows. Methods: Eighteen DLY and 18 DBJ growing barrows were randomly allotted to a $2{\times}3$ factorial arrangement involving 2 crossbreeds and 3 high-fiber diets. The experiment lasted 15 d with 10 d for diets adaptation, 3 d for feces collection and 2 d for digesta collection. Three diets were based on corn and soybean meal with 25% wheat middlings, rice bran and alfalfa meal respectively. Results: DBJ had a greater (p<0.05) AID of isoleucine, leucine, lysine, phenylalanine and valine and a lower (p<0.05) AID of methionine than DLY. The hindgut disappearance of acid detergent fiber for DBJ was greater (p<0.05) than DLY. The ATTD of gross energy, dry matter, organic matter, neutral detergent fiber and acid detergent fiber in wheat middlings diet were greater (p<0.05) than in rice bran and alfalfa meal diets. The hindgut disappearance of neutral detergent fiber and acid detergent fiber in wheat middlings diet or rice bran diet were the highest or lowest (p<0.05), and those of alfalfa meal diet were the middle. Barrows fed rice bran diet had a greater (p<0.05) hindgut disappearance of gross energy, dry matter and organic matter and lower hindgut disappearance of neutral detergent fiber and acid detergent fiber than barrows fed alfalfa meal diet Conclusion: DBJ growing barrows showed a significant higher digestibility of fiber in the hindgut and most IAA in the small intestine compared with DLY barrows. The digestibilities of chemical constituents and IAA were affected by the diets formulated with different fiber sources.

The Development of Gastrointestinal Tract and Pancreatic Enzymes in White Roman Geese

  • Shih, B.L.;Yu, B.;Hsu, J.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.841-847
    • /
    • 2005
  • The objective of this experiment was to investigate the development of gastrointestinal tract and activities of pancreatic enzymes in White Roman geese. Thirty developing embryos at the 22th, 24th and 26th day of incubation and at hatching, and sixteen or eight goslings, half males and half females, at the 1, 3, 7 or 11, 14, 21 and 28 days of age were sampled, respectively. The weights of the yolk, gastrointestinal tract and intestinal length, and the activities of pancreatic enzymes were measured. Residual yolk weight decreased rapidly during late incubation and was nearly depleted at 3 days of age. The protein and energy contents in the residual yolk of goslings at 3 days of age were significantly (p<0.05) less than those at the late incubation. From 6 days before hatching to 28 days of age, the absolute weights of gizzard, proventriculus, liver, pancreas, small intestine and large intestine in goslings increased by 48, 457, 94, 2334, 89 and 76 times, respectively. The relative weights of proventriculus, gizzard, liver, pancreas, small intestine and large intestine reached peaks at 3, 3, 14, 14, 11 and 11 days of age, respectively, and then decreased gradually. However, the relative lengths of small intestine and large intestine reached peaks at 3 days of age and at hatching, respectively. The activities of pancreatic trypsin and chymotrypsin increased sharply from hatching to 14 day of age, and then decreased gradually until 21 days of age. The activity and specific activity of pancreatic amylase were increased following by age and peaked at 7 to 11 and 21 days of age, respectively. The activity and specific activity of pancreatic lipase reached a plateau from 11 to 28 days of age. These results indicate that the gastrointestinal tract and activities of pancreatic enzymes developed more rapidly than body weight through the early growing period of goslings.

Research trends in outdoor pig production - A review

  • Park, Hyun-Suk;Min, Byungrok;Oh, Sang-Hyon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1207-1214
    • /
    • 2017
  • Since the industrialization of swine production in the late 1900s, swine farms in the United States, as well as in Europe, have largely become consolidated. Pig farms became larger in size but fewer in number, with 91% of market pigs being produced by large operations with 5,000 or more pigs on-site in the US, and only 3% of the total utilized agricultural land representing organic farming. Such change in the market made it difficult for small farmers to stay competitive, forcing them to find alternative ways to reduce the cost of production and increase profit using the outdoor production system. In contrast to the indoor confinement system, outdoor production system uses pasture-based units and/or deep-bedded hoop structures that promote animal welfare and environmental sustainability with a lower capital investment. In accord with the growing concern for animal and environmental welfare and food safety by the consumers, small farmers practicing an outdoor production system are seeing increased opportunities for marketing their products in the pork niche market. Unlike the general belief that the reproductive and growth performance measures of the outdoor sows and piglets are poorer in comparison with the animals reared indoors, studies showed that there was no significant difference in the performance measures, and some traits were even better in outdoor animals. Improved reproductive and production traits can increase the sustainability of outdoor farming. Present study reviewed the recent studies comparing the performance measures, meat quality and health of indoor and outdoor animals, as well as the efforts to improve the outdoor production system through changes in management such as hut types and breed of animals.

Effect of Heifer Frame Score on Growth, Fertility, and Economics

  • Senturklu, S.;Landblom, D.G.;Perry, G.A.;Petry, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • A non-traditional forage-based protocol was employed to evaluate replacement heifer growth, fertility, and economics between small frame (SF, 3.50; n = 50) and large frame (LF, 5.56; n = 50) heifers using three increasing gain growth phases. Preceding an 85 d growing-breeding period (Phase 3; P3) the heifers were managed as a common group for Phases 1 and 2 (P1 and P2). During P1, heifers grazed common fields of unharvested corn and corn residue (total digestible nutrients [TDN] 56%) with supplemental hay. For P2, heifers grazed early spring crested wheatgrass pasture (CWG; TDN 62%) that was followed by the final P3 drylot growing and breeding period (TDN 68%). Small frame heifers were lighter at the end of P1 in May and at the start of P3 breeding in August (p = 0.0002). Percent of mature body weight (BW) at the end of P1 (209 d) was 48.7% and 46.8%, respectively, for the SF and LF heifers and the percent pubertal was lower for SF than for LF heifers (18.0% vs 40.0%; p = 0.02). At breeding initiation (P3), the percentage of mature BW was 57.8 and 57.2 and the percentage pubertal was 90.0 and 96.0 (p = 0.07) for the SF and LF heifers, respectively; a 5-fold increase for SF heifers. Breeding cycle pregnancy on days 21, 42, and 63, and total percent pregnant did not differ (p>0.10). In drylot, SF heifer dry matter intake (DMI) was 20.1% less (p = 0.001) and feed cost/d was 20.3% lower (p = 0.001), but feed cost/kg of gain did not differ between SF and LF heifers (p = 0.41). Economically important live animal measurements for muscling were measured in May and at the end of the study in October. SF heifers had greater L. dorsi muscle area per unit of BW than LF heifers (p = 0.03). Small frame heifer value was lower at weaning (p = 0.005) and the non-pregnant ending heifer value was lower for SF heifers than for the LF heifers (p = 0.005). However, the total development cost was lower for SF heifers (p = 0.001) and the net cost per pregnant heifer, after accounting for the sale of non-pregnant heifers, was lower for SF heifers (p = 0.004). These data suggest that high breeding efficiency can be attained among March-April born SF and LF virgin heifers when transitioned to a more favorable May-June calving period through the strategic use of grazed and harvested forages resulting in a lower net cost per pregnant SF heifer.

INFLUENCE OF DIRECT-FED MICROBIALS ON RUMINAL MICROBIAL FERMENTATION AND PERFORMANCE OF RUMINANTS: A REVIEW

  • Yoon, I.K.;Stern, M.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.6
    • /
    • pp.533-555
    • /
    • 1995
  • Direct-fed microbials (DFM) have been used to enhance milk production in lactating cattle and to increase feed efficiency and body weight gain in growing ruminants. Primary microorganisms that have been used as DFM for ruminants are fungal cultures including Aspergillus oryzae and Saccharomyces cerevisiae and lactic acid bacteria such as Lactobacillus or Streptococcus. Attempts have been made to determine the basic mechanisms describing beneficial effects of DFM supplements. Various modes of action for DFM have been suggested including : stimulation of ruminal microbial growth, stabilization of ruminal pH, changes in ruminal microbial fermentation pattern, increases in digestibility of nutrients ingested, greater nutrient flow to the small intestine, greater nutrient retention and alleviation of stress, however, these responses have not been observed consistently. Variations in microbial supplements, dosage level, production level and age of the animal, diet and environmental condition or various combinations of the above may partially explain the inconsistencies in response. This review summarizes production responses that have been observed under various conditions with supplemental DFM and also corresponding modification of ruminal fermentation and other changes in the gastrointestinal tract of ruminant animals.

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

  • Metzler, B.U.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.603-615
    • /
    • 2008
  • Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.

EFFECTS OF DIETARY CELLULOSE AND PROTEIN LEVELS ON GROWTH PERFORMANCE, ENERGY AND NITROGEN UTILIZATION, LIPID CONTENTS AND DEVELOPMENT OF INTERNAL ORGANS IN GROWING CHICKS

  • Siri, S.;Tobioka, H.;Tasaki, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.235-242
    • /
    • 1993
  • In order to investigate the effects of dietary cellulose and protein levels on chick performance, four semi-purified diets were formulated so as to contain cellulose at levels of 5% (LC) and 20% (HC) in combination with 10% (LP) and 20% (HP) protein, and fed ad libitum to 1-week-old White Leghorn male chicks for 3 weeks. There were no significant differences in feed intake, body weight gain and feed efficiency between the LC-HP and HC-HP groups. All parameters were lower in the LP groups; the HC-LP group consumed very small amount of feed and lost body weight during the experiment. The retention rates of DM, ash, nitrogen and energy were higher in the HP than the LP groups. The triglyceride concentration of carcass was lower in the HC-LP group and that of liver was higher in the LC-LP group. The carcass total cholesterol level was higher in the HC-HP group. The relative weight of most digestive organs was higher in the HP group irrespective of the cellulose level. In conclusion, the chick performance was primarily influenced by dietary protein level, and when the chicks were fed inadequate levels of protein, the low cellulose level gave a better performance than the high cellulose level.