Browse > Article
http://dx.doi.org/10.5713/ajas.2005.1141

Effects of Xylanase Supplementation to Wheat-based Diet on the Performance and Nutrient Availability of Broiler Chickens  

Chiang, Chia-Chun (Department of Animal Science, National Chung-Hsing University)
Yu, Bi (Department of Animal Science, National Chung-Hsing University)
Chiou, Peter Wen-Shyg (Department of Animal Science, National Chung-Hsing University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.18, no.8, 2005 , pp. 1141-1146 More about this Journal
Abstract
A trial was conducted to evaluate the level of wheat substituted for corn in a traditional corn-soy diet and the xylanase supplementation effect on the growth performance and nutrient digestion of broiler chickens. This experiment was a randomized design with a 4${\times}$2 factorial arrangement with four levels of wheat substitution and two levels of enzyme inclusion in the diet. Wheat replaced 0, 25, 50 or 100% corn with or without 1 g/kg xylanase supplementation in iso-nitrogenous and iso-calorific experimental diets. The results showed that in the growing period, broilers attained the highest (p<0.05) body weight gain, feed intake, and relative small intestine weight when wheat was substituted at 25% for corn. The relative caecum weight increased (p<0.05) linearly with increasing levels of wheat substitution for corn. However, during the finishing period and entire experimental period from 0 to 6 weeks, no significant difference was shown in the growth performance among all treatments. Xylanase inclusion significantly improved the body weight gain, fat availability (p<0.01) and diet metabolisable energy (p<0.1) but decreased (p<0.05) the relative GI tract weight during the growing period. The digesta viscosity of 6-week old broilers was also decreased (p<0.05). It appears that wheat substituted for corn did not affect the growth performance, nutrient digestion, and the digesta viscosity of chickens. It is acceptable to completely substitute wheat for corn. Xylanase supplementation improved performance.
Keywords
Broiler; Digestibility; Performance; Viscosity; Wheat; Xylanase;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Allen, C. M., K. J. McCracken and M. R. Bedford. 1997. Effect of fat type, rate of wheat inclusion and enzyme supplementation on diet metabolisability and broiler performance. Br. Poult. Sci. 38:S25-S45.
2 Cameron-Smith, D., G. R. Collier and K. O’Dea. 1994. Effects of soluble dietary fibre on the viscosity of gastrointestinal contents and the acute glycaemic response in the rat. Br. J. Nutr. 71:563-571.
3 Choct, M. and G. Annison. 1990a. The inhibition of nutrient digestion by wheat pentosans. Br. J. Nutr. 67:123-132.
4 Erlinger, S. 1987. Physiology of bile secretion and entrohepatic circulation, p. 1557-1580. In (Ed. L. R. Johnson), Physiology of the Gastrointestinal Tract. Raven Press, New York.
5 Jacobs, L. R. and F. A. White. 1983. Modulation of mucosal cell proliferation in the intestine of rats fed a wheat bran diet. Am. J. Clin. Nutr. 37:946-953.
6 Yu, B., J. C. Hsu and P. W. S. Chiou. 1998. Effects of $\beta$-glucanase supplementation of barley diets on growth performance of broilers. Anim. Feed Sci. Technol. 70:353-361.
7 AOAC. 1990. Official Methods of Analysis. 15th edn., Association of Official Analytical Chemists, Arlington, Virginia.
8 Annison, G. 1992. Commercial enzyme supplementation of wheat based diets raises ileal glycanase activities and improved apparent metabolizable energy, starch and pentosan digestibilities in broiler chickens. Anim. Feed Sci. Technol. 38:105-121.
9 Preston, G. M., K. J. McCracken and M. R. Bedford. 2001. Effect of wheat content, fat source and enzyme supplementation on diet metabolisability and broiler performance. Br. Poult. Sci. 42:625-632.   DOI
10 Yu, B., Y. M. Sun and P. W. S. Chiou. 2002. Effects of glucanase inclusion in a de-hulled barley diet on the growth performance and nutrient digestion of broiler chickens. Anim. Feed Sci. Technol. 102:35-52.
11 Choct, M. and G. Annison. 1992a. The inhibition of nutrient digestion by wheat pentosans. Br. J. Nutr. 67:123-132.
12 Brown, R. C., J. Kelleher and M. S. Losowsky. 1979. The effects of pectin on the structure and function of the rat small intestine. Br. J. Nutr. 42:357-365.
13 Leegwater, D. C., A. P. de Groot and M. van Kalmthout-Kuyper. 1974. The aetiology of caecal enlargement in the rat. Food Cosmet. Toxicol. 12(5/6):687-697.
14 Veldman, A. and H. A. Vahl. 1994. Xylanase in broiler diets with differences in characteristics and content of wheat. Br. Poult. Sci. 35:537-550.
15 Steenfeldt, S., A. Mullertz and F. J. Jensen. 1998. Enzyme supplementation to wheat-based diets for broilers. 1. Effectss on growth performance and intestinal viscosity Anim. Feed Sci. Technol. 75:27-43.
16 Choct, M. and G. Annison. 1992b. Anti-nutritive effects of wheat pentosans in broiler-chickens: Role of viscosity and gut microflora. Br. Poult. Sci. 33:821-834.
17 Vranjes, M. V., H. P. Pfirter and C. Wenk. 1994. Influence of processing treatment and type of cereal on the effects dietary enzymes in broiler diets. Anim. Feed Sci. Technol. 46:261-270.
18 Burrin, D. G., C. F. Ferrell and R. A. Britton. 1990. Level of nutrition and visceral organ size and metabolic activity in sheep. Br. J. Nutr. 64:439-448.
19 Bedford, M. R. 1995. Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim. Feed Sci. Technol. 53:145-155.   DOI   ScienceOn
20 Choct, M. and G. Annison. 1990b. Antinutritive activity of wheat pentosans in broiler diets. Br. Poult. Sci. 31:811-821.
21 Salih, M. E., H. L. Classen and G. L. Cambell. 1991. Response of chickens fed on hull-less barley to dietary$\beta$-glucanase at different ages. Anim. Feed Sci. Technol. 33:139-149.
22 Pasquier, B., M. Armand, F. Guillon, C. Castelain, P. Borel, J. L. Barry, G. Pieroni and D. Lairon. 1996. Viscous soluble dietary fibers alter emulsification and lipolysis of triacylglycerols in duodenal medium in vitro. J. Nutr. Biochem. 7:293-302.
23 Choct, M., R. J. Hughes, J. Wang, M. R. Bedford, A. J. Morgan and G. Annison. 1996. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci. 37:609-621.
24 SAS institute Inc. 1989. SAS/STAT User’s Guide. Version 6.4th Edn. SAS Institute Inc., Carry, North Carolina.
25 Hew, L. I., V. Ravindran, Y. Mollah and W. L. Bryden. 1998. Influence of exogenous xylanase supplementation on apparent metabolizable energy and amino acid digestibility in wheat for broiler chickens. Anim. Feed Sci. Tech. 75:83-92.
26 Buchsbaum, R., J. Wilson and I. Valiela. 1986. Digestibility of plant constituents by Canada geese and Atlantic brant. Ecology. 67:386-393.
27 Fengler, A. I., J. R. Pawlik and R. R. Marquardt. 1988. Improvement in nutrient retention and changes in excreta viscosities in chicken fed rye containing diets supplemented with fungal enzymes, sodium taurochalate and penicillin. Can. J. Anim. Sci. 68:483-491.
28 Schooneveld-Bergmans, M. E. F., Y. M. van Dijk, G. Beldman and A. G. J. Voragen. 1999. Physicochemical Characteristics of Wheat Bran Glucuronoarabinoxylans. J. Cereal Sci. 29:49-61.
29 Lee, S. C., L. Porsky and J. W. de Vries. 1992. Determination of total, soluble, and insoluble dietary fiber in food-enzymaticgravimetric method, MES-TRIS buffer: collaborative study. J. AOAC. Int. 75(3):395-416.
30 Marquardt, R. R., D. Boros, W. Guenter and G. Crow. 1994. The nutritive value of barley, rye, wheat and corn for young chicken as affected by use of a Trichoderma reesei enzyme preparation. Anim. Feed Sci. Technol. 45:363-378.