• Title/Summary/Keyword: growing season

Search Result 1,006, Processing Time 0.03 seconds

The Impact of Air Temperature During the Growing Season on NEE of the Apple Orchard (사과 생육기의 기온이 사과원의 NEE에 미치는 영향)

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung;Ryu, Jong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1211-1215
    • /
    • 2012
  • Terrestrial ecosystem are a strong sink of carbon. Forest ecosystem, one of them, has been expected to play an important role in climate changing process by absorbing atmospheric carbon dioxide. On the other hand, agricultural ecosystem that consists mainly of annual crops is regarded as poor contributor to carbon accumulation, because its production (carbon hydrate) is decomposed into carbon at a short period, which is emitted to the atmosphere. However, it is thought that fruit tree plays a great role in decreasing atmospheric carbon dioxide concentration, same as forest. Net ecosystem exchange of $CO_2$ (NEE) was measured to estimate carbon fixation capacity using an eddy covariance (EC) system method in 2 years from 2005 to 2006 at an apple orchard in Uiseong, Gyeongbuk. Average air temperature values were higher in 2006 than in 2005 during the dormant season, and lower by about $5^{\circ}C$ over the growing season causing visible cold injuries. Accordingly, we investigated long-term exchange of carbon to determine how much difference of carbon fixation capacity was shown between 2006 and 2005 in terms of environmental and plant variables such as NEE, leaf area index (LAI), and Albedo. NEE was $4.8Mg\;C\;ha^{-1}yr^{-1}$ in 2005 and $4.7Mg\;C\;ha^{-1}yr^{-1}$ in 2006, respectively. Low temperature after July in 2006 decreased LAI values faster than those in 2005. Meanwhile, Albedo values were higher after July in 2006 than in 2005. These results show that the low temperature after July in 2006 apparently affected apple growth.

Effects of Sorghum Hybrid and Grain Supplementation of Silage-Based Diets on Nutrient Digestibilities and Passage Rates and Ruminal Metabolism in Growing Steers

  • Bolsen, K.K.;Dalke, B.S.;Sonon, R.N. Jr.;Young, M.A.;Huck, G.L.;Harbers, L.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.391-397
    • /
    • 1997
  • Six medium-framed steers, fitted with ruminal cannulas, were utilized in a $6{\times}6$ Latin square design with a $3{\times}2$ arrangement of treatments to determine the effects of sorghum hybrid and grain supplementation on nutrient digestibilities and passage rates and ruminal metabolism of silage-based diets fed to growing steers. The diets consisted of three wholes-plant silages (a high grain-containing, grain sorghum and middle-season, moderate grain-containing, and late-season, low grain-containing forage sorghums), each fed with or without 25% rolled grain sorghum. No significant interactions occurred between sorghum hybrid and grain supplementation for the digestion or passage rate criteria measured. Ruminal butyrate concentration was the only fermentation characteristic affected by a hybrid ${\times}$ grain supplementation interaction. The grain sorghum silage diets had the highest DM, OM, and ADF digestibilities; the late-season silage diets, the lowest. Digestibility of NDF tended to be highest (p < 0.10) for the grain sorghum silage, whereas starch digestibility was not affected by sorghum hybrid. Ruminal ammonia, acetate, propionate, butyrate, and total VFA concentrations were highest for the grain sorghum silage diets. Grain supplementation increased DM and OM digestibilities, but had no effect on digestibilities of NDF, ADF, and starch. Ruminal pH was decreased, but total VFA concentration and acetate : propionate ratio were not affected by grain supplementation.

Seasonal Changes in Chemical Components of the Leaves of Dendropanax morbifera Lev. (채취시기(採取時期)에 따른 황칠(黃漆)나무 잎의 화학성분(化學性分) 변화(變化))

  • Kim, Hyung-Ryang;Chung, Hee-Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.562-567
    • /
    • 1999
  • Dendropanax morbifera Lev. leaves were collected during different seasons to analyze the chemical components. In proximate composition the leaves collected in spring had the highest moisture content and in winter had the lowest. Lipid, ash and fiber contents gradually increased from spring to winter and in winter had the highest. Protein content decreased until summer and then it increased. All of free sugars detected have gradually increased during the growing season. Unsaturated fatty acids content was higher than that of the saturated fatty acids and the major saturated and unsaturated fatty acids were arachidic acid and cis-13,16-docosadienoic acid. respectively. Fifteen free amino acids detected with arginine content being the highest regardless of season and amino acid content gradually decreased during the seasons. The highest content of mineral elements was potassium in leaves collected in spring, with calcium was the highest in leaves picked in other seasons. Vitamin C content was gradually decreased over the growing season and soluble tannin content increased notably.

  • PDF

Evaluation of Reservoir Drought Response Capability Considering Precipitation of Non-irrigation Period using RCP Scenario (RCP 시나리오에 따른 비관개기 누적강수량을 고려한 둑높이기 저수지의 미래 가뭄대응능력 평가)

  • Bang, JeHong;Lee, Sang-Hyun;Choi, Jin-Yong;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.31-43
    • /
    • 2017
  • Recent studies about irrigation water use have focused on agricultural reservoir operation in irrigation period. At the same time, it is significant to store water resource in reservoir during non-irrigation period in order to secure sufficient water in early growing season. In this study, Representative Concentration Pathways (RCP) 4.5, 8.5 scenarios with the Global Climate Model (GCM) of The Second Generation Earth System Model (CanESM2) were downscaled with bias correlation method. Cumulative precipitation during non-irrigation season, October to March, was analyzed. Interaction between cumulative precipitation and carry-over storage was analyzed with linear regression model for ten study reservoirs. Using the regression model, reservoir drought response ability was evaluated with expression of excess and deficiency. The results showed that future droughts will be more severe than past droughts. Especially in case of non-exceedance probability of 10%, drought in southern region seemed to be serious. Nine study reservoirs showed deficiency range from 10% to 55%, which turned out to be vulnerable for future drought. Only Jang-Chan reservoir was secure for early growing season in spite of drought with deficiency of 8% and -2%. The results of this study represents current agricultural reservoirs have vulnerability for the upcoming drought.

Effect of Agricultural Countermeasures on Ingestion Dose Following a Nuclear Accident

  • Keum, Dong-Kwon;Jeong, Hyojoon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho;Lee, So-Hyeon;Jung, Tae-Jong
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2019
  • Background: Management of an agricultural food product system following a nuclear accident is indispensable for reducing radiation exposure due to ingestion of contaminated food. The present study analyzes the effect of agricultural countermeasures on ingestion dose following a nuclear accident. Materials and Methods: Agricultural countermeasures suitable for domestic farming environments were selected by referring to the countermeasures applied after the Fukushima accident in Japan. The avertable ingestion doses that could be obtained by implementing the selected countermeasures were calculated using the Korean Agricultural Countermeasure Analysis Program (K-ACAP) to investigate the efficiency of each countermeasure. Results and Discussion: Of the selected countermeasures, the management of crops was effective when radionuclide deposition occurred during the growing season of plants. Treatment by soil additive and topsoil removal was effective when deposition occurred during the nongrowing season of plants. The disposal of milk was not effective owing to the small contribution of milk to the overall ingestion dose. Clean feeding of livestock was effective when deposition occurred during the growing season of fodder plants such as pasture and rice-straw. Finally, the effect of food restriction increased with the soil deposition density of radionuclide. The practical effect of countermeasures was very small when the avertable ingestion dose was absolutely low. Conclusion: The agricultural countermeasures selected to reduce the radionuclide ingestion dose after a nuclear accident must be made appropriate by considering the accident situation, such as the soil deposition density of the radionuclide and the deposition date in relation to farming cycles.

Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum (국립수목원의 전나무(Abies holophylla) 조림지의 물 이용 효율의 계절 및 경년 변동)

  • Thakuri, Bindu Malla;Kang, Minseok;Zhang, Yonghui;Chun, Junghwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.366-377
    • /
    • 2016
  • Water use efficiency (WUE) is considered as an important ecological indicator which may provide information on the process-structure relationships associated with energy-matter-information flows in ecosystem. The WUE at ecosystem-level can be defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). In this study, KoFlux's long-term (2007-2015) eddy covariance measurements of $CO_2$ and water vapor fluxes were used to examine the WUE of needle fir plantation in Korea National Arboretum. Our objective is to ascertain the seasonality and inter-annual variability in WUE of this needle fir plantation so that the results may be assimilated into the development of a holistic ecological indicator for resilience assessment. Our results show that the WUE of needle fir plantation is characterized by a concave seasonal pattern with a minimum ($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$) in August and a maximum ($5.1-11.4g\;C{\cdot}(kg\;H_2O)^{-1}$) in February. During the growing season (April to October), WUE was on average $3.5{\pm}0.3g\;C\;(kg\;H_2O)^{-1}$. During the dormant seasons (November to March), WUE showed more variations with a mean of $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$. These values are in the upper ranges of WUE reported in the literature for coniferous forests in temperate zone. Although the growing season was defined as the period from April to October, the actual length of the growing season (GSL) varied each year and its variation explained 62% of the inter-annual variability of the growing season WUE. This is the first study to quantify long-term changes in ecosystem-level WUE in Korea and the results can be used to test models, remote-sensing algorithms and resilience of forest ecosystem.

Water Quality and Sediment Contamination in the Iksan Stream (익산천 수질시료와 저질토의 오염도 평가)

  • Seo, Young-Seok;Cho, Min;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.123-128
    • /
    • 2013
  • Water quality and contamination of sediment is a growing concern in the Iksan stream of Korea. Heavy metal contamination and changes in the physicochemical properties of the stream were evaluated. Water and sediment samples were collected from six sites during the dry and rainy seasons; pH, DO, EC, ORP, turbidity, $PO_4$-P, $NO_3$-N and selected heavy metals (Cu, Pb, Ni, As, Zn, Cd, Hg) were measured. Results showed almost no change in pH between seasons. DO was highest at site 2 (~2.63 mg/L) in the dry season; EC (1,540 ms/m) was greatest at site 1 in both seasons. The ORP gradually increased from the dry to rainy season at most of the sites and was highest at site 5. Turbidity was highest at site 1 and gradually decreased from the dry to rainy season at all sites except site 3. $PO_4$-P ranged from a high of 1,193mg/L at site 1 to in the dry season to a low of ~1.2 mg/L at site 4. In contrast, $NO_3$-N was highest at site 3 in the rainy season (12,531 mg/L). Among the heavy metals measured, Cu and Zn concentrations were highest at all sediment sites. Cu and Zn are added to livestock feed to improve reproductive rates and can be carried to the stream with manure. Transport of sediment and heavy metals during the rainy season is the major source of stream contamination and it is important to continue monitoring and take necessary action in these areas.

Monitoring soil respiration using an automatic operating chamber in a Gwangneung temperate deciduous forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.411-423
    • /
    • 2011
  • This study was conducted to quantify soil $CO_2$ efflux using the continuous measurement method and to examine the applicability of an automatic continuous measurement system in a Korean deciduous broad-leaved forest. Soil respiration rate (Rs) was assessed through continuous measurements during the 2004-2005 full growing seasons using an automatic opening/closing chamber system in sections of a Gwangneung temperate deciduous forest, Korea. The study site was an old-growth natural mixed deciduous forest approximately 80 years old. For each full growth season, the annual Rs, which had a gap that was filled with data using an exponential function derived from soil temperature (Ts) at 5-cm depth, and Rs values collected in each season were 2,738.1 g $CO_2$ $m^{-2}y^{-1}$ in 2004 and 3,355.1 g $CO_2$ $m^{-2}y^{-1}$ in 2005. However, the diurnal variation in Rs showed stronger correlations with Ts (r = 0.91, P < 0.001 in 2004, r = 0.87, P < 0.001 in 2005) and air temperature (Ta) (r = 0.84, P < 0.001 in 2004, r = 0.79, P < 0.001 in 2005) than with deep Ts during the spring season. However, the temperature functions derived from the Ts at various depths of 0, -2, -5, -10, and -20 cm revealed that the correlation coefficient decreased with increasing soil depth in the spring season, whereas it increased in the summer. Rs showed a weak correlation with precipitation (r = 0.25, P < 0.01) and soil water content (r = 0.28, P < 0.05). Additionally, the diurnal change in Rs revealed a higher correlation with Ta than that of Ts. The $Q_{10}$ values from spring to winter were calculated from each season's dataset and were 3.2, 1.5, 7.4, and 2.7 in 2004 and 6.0, 3.1, 3.0, and 2.6 in 2005; thus, showing high fluctuation within each season. The applicability of an automatic continuous system was demonstrated for collecting a high resolution soil $CO_2$ efflux dataset under various environmental conditions.

Seasonal Variation of Reproductive Characters in Two Introduced Species of Taraxacum (두 외래종 민들레 번식 특성의 계절적 변이)

  • 강혜순;최유미
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_1
    • /
    • pp.457.2-486
    • /
    • 1998
  • Ecological success of introduced species is frequently attributed to the reproductive characters of those species. We examined the relationship between both flowering season and plant size and reproductive characters in two introduced species of Taraxacum, e.g., T. officinale and T.laevigatum. Seventy six plants of T. officinale and 23 plants of T. laevigatum were randomly tagged from a population at the sungshin Women's University in April of 1997. The size and number of vegetative characters such as rosette diameter, leaf number, and the largest leaf length and width were measured for each plant at the onset of flowering. The infructescence was collected continually from each plant before seed dispersal from April to August of 1997. The number of infructescence per plant, and seed number and total seed weight per infructescence were measured. Mean individual seed weight per infructescence was also obtained. T. officinale possessed larger sized, but smaller number of, leaves than T. laevigatum, thereby resulting in no significant difference in total leaf area. There was a trend that vegetatively larger plants in both of these species produced reproductive characters larger in size or greater in number, except for seed number and total seed weight per infructescence in T. laevigatum. All reproductive characters examined in T. officinale decreased toward the end of flowering season. In T. laevigatum, infructescence number per plant also declined during a flowering season: however, mean seed number per infructescence increaed toward the end of flowering season with no significant seasonal change in the total seed weight per infructescence. T. officinale produced on average about twice as many seeds per plant as T. laevigatum during a growing season. These two Taraxacum species produced quite small seeds in size compared to the endemic species, exhibiting a far better dispersal ability of introduced species. These data demonstrate that most reproductive characters decline in size and number in both species during a long flowering period, but the two species appear to employ different strategies to achieve reproductive success in disturbed habitats.

  • PDF

Effect of Breed (Lean or Fat Pigs) and Sex on Performance and Feeding Behaviour of Group Housed Growing Pigs in a Tropical Climate

  • Renaudeau, D.;Giorgi, M.;Silou, F.;Weisbecker, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.593-600
    • /
    • 2006
  • The effects of breed and sex on individual growth performance and feeding behaviour were studied between 45 and 90 kg BW in two replicates of forty group-housed pigs. The first and the second replicates were carried out during the warm season (i.e. between February and April 2003) and during the hot season (i.e. between August and October 2003), respectively. During the warm season, ambient temperature and relative humidity averaged $25.3^{\circ}C$ and 86.0%. The corresponding values for the hot season were $27.9^{\circ}C$ and 83.6%. The pigs were grouped in pens of 10 animals on the basis of breed (Creole or Large White) and sex (gilt or castrated male) and given ad libitum access to a grower diet (9.0 MJ/kg net energy and 158 g/kg crude protein) via feed intake recording equipment (Acema 48). An ear-tag transponder was inserted into each pig and this allowed the time, duration, and size of individual visits to be recorded. The growth performance and feeding pattern were significantly affected by breed, sex, and season. The Creole pigs (CR) had a lower average daily gain (ADG) (642 vs. 861 g/d, p<0.01) and carcass lean content ($LC_{90kg}$) (35.4 vs. 54.5%; p<0.01) and a higher backfat thickness at 90 kg BW ($BT_{90kg}$) (23.4 vs. 10.4 mm; p<0.01) than Large White pigs (LW) whereas the average daily feed intake (ADFI) was not affected by breed (2.34 vs. 2.22 kg/d, respectively for CR and LW pigs; p>0.10). Consequently, the food:gain ratio was higher in CR than in LW (3.65 vs. 2.58; p<0.01). CR had less frequent meals but ate more feed per meal than LW (5.9 vs. 8.8 meals/d and 431 vs. 279 g/meal; p<0.01). The rate of feed intake was lower (27.6 vs. 33.9 g/min; p<0.01) and the ingestion time per day and per meal were higher in CR than in LW (87.1 vs. 69.7 min/d and 15.8 vs. 8.4 min/meal; p<0.01). The ADFI and BT90 kg were higher (2.38 vs. 2.17 kg/d and 18.1 vs. 15.9 mm; p<0.05) and LC90 kg was lower (43.5 vs. 46.4%; p<0.01) in castrated males (CM) than in gilts (G) whereas ADG was not affected by sex (p = 0.12). The difference in lean content between CM and G was greater in CR than in LW. The ADFI and ADG were reduced during the hot season (2.18 vs.2.38 kg/d and 726 vs. 777 g/d, respectively; p<0.05) whereas feed conversion and carcass lean content were not affected by season (p>0.05). Average feeding time per meal and meal size decreased during the hot season (10.9 vs. 13.2 min/meal and 316 vs. 396 g/meal; p<0.01) whereas the rate of feed intake was not affected by season (p = 0.83). On average, 0.69 of total feed intake was consumed during the diurnal period. However, this partition of feed intake was significantly affected by breed, sex, and season. In conclusion, the breed, sex and season significantly affect performance and feeding pattern in growing pigs raised in a tropical climate. Moreover, the results obtained in the present study suggest that differences observed in BW composition between CR and LW are associated with difference in feeding behaviour, in particular, the short-term regulation of feed intake.