• 제목/요약/키워드: grouting zone

검색결과 62건 처리시간 0.028초

터널막장 단층파쇄대의 지반특성 분석에 대한 사례연구 (Case Study about the Ground Characteristics Analysis of Tunnel Face Fault Fractured Zone)

  • 민경남;임광수;장창식;임대환
    • 터널과지하공간
    • /
    • 제15권2호
    • /
    • pp.111-118
    • /
    • 2005
  • 연구지역은 옥천변성대에 속하며 단층파쇄대가 터널굴착방향과 평행하게 존재하여 막장면의 자립성 저하 및 이에 따르는 터널 주변지반의 이완 등으로 터널 내에 과도한 변위가 발생하였다. 이에 따라 단층파쇄대의 영향범위를 파악하고 특성을 분석하기 위하여 TSP(Tunnel Seismic Prediction)탐사를 수행하였다. 또한 막장면 조사와 시추조사를 병행 실시하여 거동원인을 분석하고 전방 파쇄대의 예측을 통하여 터널 굴착 및 지보에 영향을 주는 지질구조대나 용수대의 위치와 규모를 확인하였다. 조사결과를 토대로 터널형상 및 그에 따른 지층상태를 3차원으로 모델링 하였다. 모델링된 개체 내에 포함된 여러 변수(함유량, 물성치, 암반등급 등 모든 정량적인 수치)는 지구통계학적 기법을 통해 분석하였다. 모델링 결과를 분석하면 단층파쇄대에 의한 풍화대의 분포가 터널우측을 중심으로 발달하면서 좌측으로 그 범위가 감소하고 있다. 단층파쇄대는 주향 $N0\~5^{\circ}E$, 경사 NW의 방향성을 가지며, 여러 개의 지질이상대를 포함한 대규모의 파쇄대로 이루어진 것으로 확인되었다. 터널내 과대 변위는 해당구간에 밀집된 불연속면의 상호교차 및 단층대에 의한 터널 좌우측 암반강도 불균형으로 편하중이 발생한 것으로 판단되며 그라우팅 등의 터널보강공법이 필요한 것으로 판단된다.

Time-lapse Resistivity Investigations for Imaging Subsurface Grout during Ground Stabilization

  • Farooq, Muhammad;Park, Sam-Gyu;Kim, Jung-Ho;Song, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.241-244
    • /
    • 2007
  • Cement-grouts are injected into limestone cavities beneath the road in the project area, in order to improve strength and reduce permeability; the extent to which grout has penetrated in cavities need to be monitored in order to determined effectiveness of cement-grout. Geophysical approaches, offer great potential for monitoring the grout injection process in a fast and cost-effective way as well as showing whether the grout has successfully achieved the target. This paper presents the ability of surface electrical resistivity to investigate the verification of the grout placement. In order to image the cement-grout, time-lapse surface electrical resistivity surveys were conducted to compare electrical resistivity images before and after injection. Cement-grout was imaged as anomalies exhibiting low resistivity than the surrounding rocks. In accordance with field monitoring, laboratory study was also designed to monitor the resistivity changes of cement-grout specimens with time-lapse. Time-lapse laboratory measurements indicated that electrical methods are good tool to identify the grouted zone. Pre-and post grouting electrical images showed significant changes in subsurface resistivity at grouted zone. The study showed that electrical resistivity imaging technology can be a useful tool for detecting and evaluating changes in subsurface resistivity due to the injection of the grout.

  • PDF

CGS공법에 의한 해성점토 및 준설매립지반의 기초보강 사례 (Case Study for Improvement of Marine Clay and Dredgedfill Ground by CGS Method)

  • 신은철;정덕교;서귀창;이명신
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.480-488
    • /
    • 2010
  • The CGS method is non-discharge replacement method improving ground stiffness by the effect of static compaction with injecting very low slump mortar into ground, and is applied for increasing bearing capacity and filling ground cavity by lifting or restoring differential settled structures and preventing differential settlement. This paper suggests design of ground improvement and construction case history for civil engineering structures by CGS method. This method can be used for reinforcing soft ground and liquefaction of loose sandy soil. This method was used in SongDo area in Incheon Economic Free Zone due to its low vibration of ground while it can improve the soft soil where underground structures(subway and box culvert) are already existed.

  • PDF

통계적 접근법에 의한 불연속암반의 지하수 유동해석 (Groundwaterflow analysis of discontinuous rock mass with probabilistic approach)

  • 장현익;장근무;이정인
    • 터널과지하공간
    • /
    • 제6권1호
    • /
    • pp.30-38
    • /
    • 1996
  • A two dimensional analysis program for groundwater flow in fractured network was developed to analyze the influence of discontinuity characteristics on groundwater flow. This program involves the generation of discontinuities and also connectivity analysis. The discontinuities were generated by the probabilistic density function(P.D.F.) reflecting the characteristics of discontinuities. And the fracture network model was completed through the connectivity analysis. This program also involves the analysis of groundwater flow through the discontinuity network. The result of numerical experiment shows that the equivalent hydraulic conductivity increased and became closer to isotropic as the density and trace length increased. And hydraulic head decreased along the fracture zone because of much water-flow. The grouting increased the groundwater head around cavern. An analysis of groundwater flow through discontinuity network was performed around underground oil storage cavern which is now under construction. The probabilistic density functions(P.D.F) were obtained from the investigation of the discontinuity trace map. When the anisotropic hydraulic conductivity is used, the flow rate into the cavern was below the acceptable value to maintain the hydraulic containment. But when the isotropic hydraulic conductivity is used, the flow rate was above the acceptable value.

  • PDF

A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques

  • Li, Chen;Wu, Zheng;Zhang, Wenlong;Sun, Yanhua;Zhu, Chun;Zhang, Xiaohu
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.449-460
    • /
    • 2020
  • The double-lane arrangement model is frequently used in underground coal mines because it is beneficial to improve the mining efficiency of the working face. When the double-lane arrangement is used, the service time of the reserved roadway increases by twice, which causes several difficulties for the maintenance of the roadway. Given the severe non-uniform deformation of the reserved roadway in the Buertai Coal Mine, the stress distribution law in the mining area, the failure characteristics of roadway and the control effect of support resistance (SR) were systematically studied through on-site monitoring, FLAC 3D numerical simulation, mechanical model analysis. The research shows that the deformation and failure of the reserved roadway mainly manifested as asymmetrical roof sag and floor heave in the region behind the working face, and the roof dripping phenomenon occurred in the severe roof sag area. After the coal is mined out, the stress adjustment around goaf will happen to some extent. For example, the magnitude, direction, and confining pressure ratio of the principal stress at different positions will change. Under the influence of high-stress rotation, the plastic zone of the weak surrounding rock is expanded asymmetrically, which finally leads to the asymmetric failure of roadway. The existing roadway support has a limited effect on the control of the stress field and plastic zone, i.e., the anchor cable reinforcement cannot fully control the roadway deformation under given conditions. Based on obtained results, using roadway grouting and advanced hydraulic support during the secondary mining of the panel 22205 is proposed to ensure roadway safety. This study provides a reference for the stability control of roadway with similar geological conditions.

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

제주도의 오염 방지 시공이 부실한 지하수 관정에 대한 구간 차폐 공법의 적용과 평가 (Application and Assesment of Regrouting Method for Improperly Constructed Wells in Jeju Island)

  • 김미진;강봉래;조희남;최성욱;양원석;박원배
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권3호
    • /
    • pp.43-51
    • /
    • 2020
  • About 90% of groundwater wells in Jeju Island are reported to be under the threat of contamination by infiltration of the surface pollutants. Most of those wells have improperly grouted annulus which is an empty space between the well and the inner casing. As a remedy to this problem, some of the wells were re-grouted by filling the annulus with cement without lifting an inner casing. In order to evaluate whether this method is appropriate for the geological structure of Jeju Island, two wells (W1 and W2) were selected and this method was applied. The water holding capacity did not decrease while the nitrate levels decreased from 16.8 and 20.2 to 6.8 and 13.8 mg/L in W1 and W2, respectively. The higher nitrate level in W2 is deemed to be influenced by the livestock farms located in the upper area of the well. In addition, transmissivity of the vedose zone was higher in W2 than W1, potentially facilitating the transport of nitrate to the groundwater. The overall result of this study suggests re-grouting of wells for the purpose of protecting water quality of goundwater should take into account geological structure of vadose zone as well as appropriate source control of the contaminants.

쉴드 TBM터널 상부 지반 연약대 전기탐사 (Electrical Resistivity Imaging for Upper Layer of Shield TBM Tunnel Ceiling)

  • 정현기;박철환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.401-408
    • /
    • 2005
  • Recently shield TBM tunnellings are being applied to subway construction in Korean cities. Generally these kinds of tunnellings have the problems in the stability of ground such as subsidence because urban subway is constructed in the shallow depth. A sinkhole occurred on the road just above the tunnel during tunneling in Kwangju, so a survey for upper layer of the tunnel was needed. But conventional Ground Probing Radar can't be applicable due to the presence of steel-mesh screen in the shield segment, so no existent geophysical method is applicable in this site. Because the outer surface of each shield segment is electrically insulated, dipole-dipole resistivity method which is popular in engineering site investigation, was tried to this survey for the first time. Specially manufactured flexible ring-type electrodes were installed into the grouting holes at an interval of 2.4 m on the ceiling. The K-Ohm II system which has been developed by KIGAM and tested successfully in many sites, was used in this site. The system consists of 1000Volt-1Ampere constant-current transmitter, optically isolated 24 bit sigma-delta A/D conversion receiver - maximum 12 channel simultaneous measurements, and graphical automatic acquisition software for easy data quality check in real time. Borehole camera logging with circular white LED lighting was also done to investigate the state of the layer. Measured resistivity data lack of some stations due to failing opening lids of holes, shows general high-low trend well. The dipole-dipole resistivity inversion results discriminate (1) one approximately 4 meter diameter cavity (grouted but incompletely hardened, so low resistivity - less than $30{\Omega}m$), (2) weak zone (100-200${\Omega}m$), and (3) hard zone (high resistivity - more than 1000${\Omega}m$) very well for the distance of 320 meters. The 2-D inversion neglects slight absolute 3-D effect, but we can get satisfactory and useful information. Acquired resistivity section and video tapes by borehole camera logging will be reserved and reused if some problem occurs in this site in the future.

  • PDF

화강풍화대를 통과하는 슬러리 TBM의 체적손실 산정에 대한 사례 연구 (Case study of volume loss estimation during slurry tbm tunnelling in weathered zone of granite rock)

  • 박현구;오주영;장석부;이승복
    • 한국터널지하공간학회 논문집
    • /
    • 제18권1호
    • /
    • pp.61-74
    • /
    • 2016
  • 본 논문에서는 화강풍화대를 통과하는 슬러리 TBM 굴진 중 지표 침하 및 체적손실 산정에 관한 사례 연구를 수행하였다. 터널 천단 침하 계측 결과로부터 TBM 굴진 단계별 침하 발생 경향을 분석하였고, 횡방향 지표 침하 트라프로부터 굴진 중 체적손실 및 트라프 변수를 산정하였다. 또한, 체적손실 산정 모델을 이용하여 지반 특성과 굴진 중 측정된 기계데이터가 반영된 굴진 단계별 체적손실을 산정하였으며, 이를 실제 계측 결과와 비교 분석하였다. 슬러리 TBM의 경우 대부분의 지표침하는 쉴드 본체 통과 및 뒤채움 주입 이후 발생하는 것으로 나타났고 문헌에 보고된 총 체적손실 및 트라프 곡선 형태가 확인되었다. 실제 굴진 중 체적손실은 굴진 단계별로 쉴드손실 예측값의 90%, 테일부 손실 예측값의 60% 수준으로 분석되었고, 쉴드 손실에 비해 테일부 손실의 편차가 큰 것으로 나타났다.

터널굴착시 지질이상대 통과방안 설계사례 연구 (A Case Study on the Design of Tunnel Excavation in Geological Anomalies)

  • 유정훈;김양균;정철화
    • 터널과지하공간
    • /
    • 제21권5호
    • /
    • pp.341-348
    • /
    • 2011
  • 터널설계를 위해 상세지반조사를 실시한 결과 터널 주요통과구간에 지질이상대로서 암종경계부 및 단층대 구간이 예측되었다. 특히 지질이상대에서 황철석이 분포하는 것을 확인하였으며 대심도 구간 시추조사과정에서 단층파쇄대(F3)에서 피압에 의한 지하수 용출현상이 나타났다. 이에 따라 지질이상대 구간에서의 보강대책을 수립하기 위해 황철석 함유구간에 대한 시설물 보강대책을 검토하였으며, 피압수 다량 구간에서는 침투류 해석 및 차수대책 등 별도의 지보패턴을 계획하였다. 또한 한반도 인근 대지진이 주로 단층대에서 발생하고 있기 때문에 단층대 통과구간에 대해 지반-구조물 상호작호(SSI) 내진해석과 구조물 보강대책을 수립하였다.