• 제목/요약/키워드: grouted sleeve

검색결과 5건 처리시간 0.022초

Experimental studies on behaviour of tubular T-joints reinforced with grouted sleeve

  • Jiang, Shouchao;Guo, Xiaonong;Xiong, Zhe;Cai, Yufang;Zhu, Shaojun
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.585-596
    • /
    • 2017
  • Tubular joints have been widely used in offshore platforms and space structures due to their merits such as easy fabrication, aesthetic appearance and better static strength. For existing tubular joints, a grouted sleeve reinforced method was proposed in this paper. Experimental tests on five tubular T-joints reinforced with the grouted sleeve and two conventional tubular T-joints were conducted to investigate their mechanical behaviour. A constant axial compressive force was applied to the chord end to simulate the compressive state of the chord member during the tests. Then an axial compressive force was applied to the top end of the brace member until the collapse of the joint specimens occurred. The parameters investigated herein were the grout thickness, the sleeve length coefficient and the sleeve construction method. The failure mode, ultimate load, initial stiffness and deformability of these joint specimens were discussed. It was found that: (1) The grouted sleeve could change the failure mode of tubular T-joints. (2) The grouted sleeve was observed to provide strength enhancement up to 154.3%~172.7% for the corresponding un-reinforced joint. (3) The initial stiffness and deformability were also greatly improved by the grouted sleeve. (4) The sleeve length coefficient was a key parameter for the improved effect of the grouted sleeve reinforced method.

Experimental and numerical study on mechanical behaviour of grouted splices with light-weight sleeves

  • Quanwei Liu;Tao Wu;Zhengyi Kong;Xi Liu;Ran Chen;Kangxiang Hu;Tengfei Xiang;Yingkang Zhou
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.165-182
    • /
    • 2024
  • Grouted sleeve splice (GSS) is an effective type of connection applied in the precast concrete structures as it has the advantages of rapidly assembly and reliable strength. To decrease the weight and cost of vertical rebar connection in precast shear walls, a light-weight sleeve is designed according to the thick-cylinder theory. Mechanical behaviour of the light-weighted GSS is investigated through experimental analysis. Two failure modes, such as rebar fracture failure and rebar pull-out failure, are found. The load-displacement curves exhibit four different stages: elastic stage, yield stage, strengthening stage, and necking stage. The bond strength between the rebar and the grout increases gradually from outer position to inner position of the sleeve, and it reaches the maximum value at the centre of the anchorage length. A finite element model predicting the mechanical properties of the light-weighted GSS is developed based on the Concrete Damage Plasticity (CDP) model and the Brittle Cracking (BC) model. The effect of the rebar anchorage length is significant, while the increase of the thickness of sleeve and the grout strength are not very effective. A model for estimating ultimate load, including factors of inner diameter of sleeves, anchorage length, and rebar diameter, is proposed. The proposed model shows good agreement with various test data.

모르타르 충전식 철근이음과 구속효과 (Confining Effect of Mortar Grouted Splice Sleeve on Reinforcing Bar)

  • 안병익;김형기;박복만
    • 콘크리트학회논문집
    • /
    • 제15권1호
    • /
    • pp.102-109
    • /
    • 2003
  • 모르타르 충전식 철근이음은 철근위치의 오차를 쉽게 흡수하여 시공이 용이하고 또한 콘크리트 타설을 최소화할 수 있는 프리캐스트 공법의 철근이음 방법중 하나로서 적용하는 경우가 증가하는 추세이다. 그러나 아직도 이에 대한 연구는 불충분한 실정으로 그라우트 충전식 철근이음 시스템의 보다 적극적인 활용을 위해서는 그 동안 연구의 미비한 부분을 보완하고 개선하여 그라우트 충전식 철근이음의 보다 합리적인 설계방법을 제시하여 실용화시킬 필요가 있다. 이에 본 연구에서는 모르타르 충전식 철근이음에서의 구속효과를 파악하기 위하여 슬리브 표면에 변형률 게이지를 부착한 실물크기의 D25, D19 철근용 스플라이스 슬리브 이음 실험체를 제작한 후에 가력실험을 실시하였다. 이 실험결과로부터 슬리브의 구속효과가 모르타르 충전식 철근이음의 부착성능에 미치는 영향을 고찰하여 다음과 같은 결론을 얻었다. 본 실험에서 측정한 슬리브 표면의 변형률 분포로부터 철근이음에 작용하는 구속력을 산정한 결과, 철근이음 실험체에 최고 $200{\sim}300kgf/{cm}^2$ 이상의 원주방향 구속응력이 작용하였고 이런 구속응력은 철근 정착길이가 감소할수록 커지는 경향이 있었다. 또한 횡방향 구속효과를 고려한 Untrauer와 Merry의 부착강도식에 측정한 슬리브 표면의 변형률로부터 구한 구속응력을 적용하면 본 연구의 실험값을 5% 이내의 편차범위에서 예측할 수 있었다.

Mechanical Performance and Stress-Strain Relationships for Grouted Splices Under Tensile and Cyclic Loadings

  • Lin, Feng;Wu, Xiaobao
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.435-450
    • /
    • 2016
  • Experimental studies were conducted on 36 grouted splices to investigate their mechanical performance under four loading schemes: (1) incremental tensile loading, (2) repeated tensile loading, (3) cyclic loading at high stress, and (4) cyclic loading at large strain. Load-deformation responses of the grouted splices under cyclic loadings were featured with pinching effect and stiffness degradation compared to those responses under tensile loadings. The shape of the hysteresis loops of load-deformation curves was similar to that under incremental tensile loading. For the purpose of structural analysis, stress-strain relationships were presented for grouted splices under various loadings.

Experimental and numerical validation of guided wave based on time-reversal for evaluating grouting defects of multi-interface sleeve

  • Jiahe Liu;Li Tang;Dongsheng Li;Wei Shen
    • Smart Structures and Systems
    • /
    • 제33권1호
    • /
    • pp.41-53
    • /
    • 2024
  • Grouting sleeves are an essential connecting component of prefabricated components, and the quality of grouting has a significant influence on structural integrity and seismic performance. The embedded grouting sleeve (EGS)'s grouting defects are highly undetectable and random, and no effective monitoring method exists. This paper proposes an ultrasonic guided wave method and provides a set of guidelines for selecting the optimal frequency and suitable period for the EGS. The optimal frequency was determined by considering the group velocity, wave structure, and wave attenuation of the selected mode. Guided waves are prone to multi-modality, modal conversion, energy leakage, and dispersion in the EGS, which is a multi-layer structure. Therefore, a time-reversal (TR)-based multi-mode focusing and dispersion automatic compensation technology is introduced to eliminate the multi-mode phase difference in the EGS. First, the influence of defects on guided waves is analyzed according to the TR coefficient. Second, two major types of damage indicators, namely, the time domain and the wavelet packet energy, are constructed according to the influence method. The constructed wavelet packet energy indicator is more sensitive to the changes of defecting than the conventional time-domain similarity indicator. Both numerical and experimental results show that the proposed method is feasible and beneficial for the detection and quantitative estimation of the grouting defects of the EGS.