• Title/Summary/Keyword: grout thickness

Search Result 23, Processing Time 0.02 seconds

Chemical and Physical Influence Factors on Performance of Bentonite Grouts for Backfilling Ground Heat Exchanger (지중 열교환기용 벤토나이트 그라우트의 시공성에 대한 화학적, 물리적 영향 요소에 관한 연구)

  • Lee, Chul-Ho;Gil, Hu-Jeong;Lee, Kang-Ja;Choi, Hang-Seok;Choi, Hyo-Pum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1475-1486
    • /
    • 2008
  • Bentonite-based grouting has been popularly used to seal a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because its high swelling potential. However, if the bentonite-based grouting is conducted in coastal areas, the salinity of groundwater changes in the mineral fabric of bentontie. In order words, an increase of cation concentration in groundwater leads to a reduction in the diffuse double-layer thickness in the bentonite mineral structure, and thus the volume of bentointe-based grouts will decrease proportional to the salinity of groundwater. In this paper, the effect of salinity (i.e., NaCl 0.5M, 0.25M, and 0.1M) on the change of swelling potential for bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, in case of using addictives such as a silica sand to increase the thermal conductivity of bentonite-based grouts, the possibility of particle segregation has been studied considering the viscosity of grouts and salinity of groundwater.

  • PDF

Application of Particulate Grouts for Improving Strength Characteristics of Municipal Wastes (도시폐기물의 강도특성 향상을 위한 현탁액 주입의 응용)

  • Cheon, Byeong-Sik;Park, Hong-Gyu;Jang, Yeon-Su
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.59-74
    • /
    • 1997
  • This paper presents the results of the geotechnical investigation and settlement analysis of a finished waste landfill to find the possibility of the site as a construction area. Also, the variations of the strength of the municipal waste after mixing with the several types of the particulate grouts are investigated. The materials of the grouts used in the experiment are Quick Lime, Portland Cement, Slag Cement and Geocrete Cement. The results of the geotechnical investigation show that the maximum dry unit weight of the waste becomes lower and optimum moisture content higher as the age of the disposed waste is younger and the organic content is higher. The thickness of the predicted differential settlements of the waste fill has large difference from location to location and the unconfined compression strength of the grout mixed waste from the experiment was higher in the order of Geocrete Cement, Slag Cement, Portland Cement and Quick Lime.

  • PDF

Measurement of Verticality and Joint Gaps of a Near-surface Disposal Facility Vault Through a Mock-up Test for Fill-up Stages (표층처분시설 처분고의 목업테스트를 통한 채움단계별 수직도 및 이음부 벌어짐 측정)

  • Choi, Dong-Ho;Ann, Ki-Yong;Choi, In-Yong;Lee, Hyuk-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.537-544
    • /
    • 2021
  • In order to describe the fill-up stages of a near-surface disposal facility vault, a mock-up test is performed, and its behavior during the fil l -up stages is investigated. On an in-site concrete foundation with a l ength of 6600mm, a width of 6600mm and a thickness of 400mm, a reinforced concrete disposal vaul t is manufactured with 4 precast (PC) corner wal l s and 8 PC side wal l s. 36 wasted drums are pl aced on the 1st fl oor in 6 by 6, and then the empty space is fil l ed with grout fil l er. These processes are repeated up to the 5th floor, and the verticality and the joint gaps are measured for each fill-up stage. The verticality is measured using a level at 6 positions on each side wall (3 positions on the left and right sides, respectivel y), i.e. a total of 24 positions on the 4 side wal l s. The joint gaps are measured at 9 positions on each side wal l (3 positions on the left, center and right sides, respectively), I.e. a total 36 positions on the 4 side walls. To measure the joint gaps, crack tips are installed on the left and right sides of every joint gap, and vernier calipers are used. The measured verticality obtained through the mock-up test was found to be ±0.1° based on the initial stage (ST0), and the result of the joint gap was up to 0.38mm. This appears to have a negligible effect on the structure.