• Title/Summary/Keyword: grout compressive strength

Search Result 84, Processing Time 0.022 seconds

Characteristics Strength of Silicasol-cement Grout Material for Ground Reinforcement (지반보강용 실리카졸 약액의 강도특성에 대한 연구)

  • Kim, Hyunki;Kim, Younghun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.47-53
    • /
    • 2010
  • This study was made on the fact that the compressive strength characteristic of the recently developed alkali silica-sol chemical grout material was examined, whose grout material used for this study was designed to understand its strength property through the uniaxial compressive strength test(homo-gel, sand-gel), permeability test, deflection strength test, etc. In order to compare with the engineering characteristics regarding alkali silica-sol grout material and sodium silicate grout material. The uniaxial compressive strength of silica-sol grout material was identified to be increased more than 3~5 times than sodium silicate grout material at the early stage(within 72 hours). When comparing with the uniaxial compressive strengths of Sand-gel and Homo-gel at the material age of 28 days in case of silica-sol grouting material the strength of Sand-gel was measured to be about 1.3 times higher than Homo-gel. In case of silica-sol, it is assumed to have the property to exert high strength when it is actually grouted into the ground. As a result of permeability test it is judged that it is possible to apply the silica-sol to the site in the place requiring the water cut-off as the silica-sol. As a result of testing the strength at the material age of 28 days of grouting-use silica-sol showed more than 3 times' difference than the sodium silicate grouting material.

Effect of Underwater Pumping on the Strength of High-Strength Grout (수중펌프압송이 고강도 그라우트의 강도에 미치는 영향)

  • Kim, Beom-Hwi;Yi, Chong-Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.193-194
    • /
    • 2022
  • The use of high-strength grout for facility foundations and bridges has recently been expanding in offshore wind farms. Offshore wind farms require a bearing capacity for horizontal loads such as wind, waves. Therefore, in this study, the strength of the high-strength grout discharged through pump pressure was measured and compared with the existing strength to secure the strength after the underwater pump pressure of the high-strength grout used in the offshore wind connection. The compressive strength measurement showed that the strength difference at each position of the core specimen was 1% higher than that of the other specimens, and there was almost no change in the strength according to the height. The strength of the core specimen decreased by 23% compared to the existing strength, which is similar to the result of this study because the strength of the core specimen decreased by approximately 25% compared to the general specimen according to related research. Therefore, it is believed that there is no decrease in strength due to underwater pumping.

  • PDF

A Study on the Repair and Strengthening Effects of Epoxy Grout for the Damaged Concrete Structure (손상된 콘크리트 구조물에 에폭시수지를 이용한 보수·보강효과에 대한 연구)

  • Shin, Sung-Woo;Cho, Tai-Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.125-132
    • /
    • 1997
  • This study was intended to investigate the effects of epoxy grout on compressive strength for damaged concrete structures. For this purpose, concrete molds were manufactured and tested for compressive strength at 28 days after water curing. Two kinds of Korea-made and one Japan-made epoxy grouts were injected into the broken concrete molds with the automatic low-pressure injecting method or the hand injecting method.

  • PDF

PROPERTIES OF LOW-PH CEMENT GROUT AS A SEALING MATERIAL FOR THE GEOLOGICAL DISPOSAL OF RADIOACTIVE WASTE

  • Kim, Jin-Seop;Kwon, S.;Choi, Jong-Won;Cho, Gye-Chun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.459-468
    • /
    • 2011
  • The current solution to the problem of using cementitious material for sealing purposes in a final radioactive waste repository is to develop a low-pH cement grout. In this study, the material properties of a low-pH cement grout based on a recipe used at ONKALO are investigated by considering such factors as pH variation, compressive strength, dynamic modulus, and hydraulic conductivity by using silica fume and micro-cement. From the pH measurements of the hardened cement grout, the required pH (< pH 11) is obtained after 130 days of curing. Although the engineering properties of the low-pH cement grout used in this study are inferior to those of conventional high-pH cement grout, the utilization of silica fume and micro-cement effectively meets the long-term environmental and durability requirements for cement grout in a radioactive waste repository.

Effect of Marine Environment and Underwater Construction on Mechanical Properties of High Strength Grout (해상환경 및 수중타설이 고강도 그라우트의 역학적 성능에 미치는 영향)

  • Kim, Beom-Hwi;Son, Da-Som;Yi, Chong-Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.89-90
    • /
    • 2023
  • In this study, grout was poured into seawater to confirm the effect of similar marine environment and underwater erosion on the mechanical performance of domestically produced high-performance grout and compared with the existing strength. As a result of the compressive strength measurement, the specimen that simultaneously performed underwater drilling and seawater curing showed slow initial strength expression in both H1 and H2, and from the 7th day, it was confirmed to be within 2% of the existing intensity. It is believed that both grout were caused by disturbance with water during underwater drilling, and the same strength was subsequently shown as the existing strength.

  • PDF

Bond Strength of Grout-Filled Splice Sleeve Considering Effects of Confinement (구속효과를 고려한 모르타르 충전식 철근이음의 부착강도)

  • Kim, Hyong-Kee;Ahn, Byung-Ik
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.615-622
    • /
    • 2003
  • The purpose of this study is to propose the more reasonable equation of bond strength of grout-filled splice sleeve. To accomplish this objective, total 60 full-sized specimens were tested under monotonic loading. The experimental variables are compressive strength of mortar, embedment length and size of reinforcing bars. Following conclusions are obtained; 1) If the adequacy of existing equations which estimate the bond strength of grout-filled splice sleeve are investigated, they underestimate the bond strength of grout-filled splice sleeve by 8-18%. Also the existing equations have a tendency to underestimate with decrease in the embedment length of reinforcing bars. 2) From the test result of bond failure, the equation which estimates the confining pressure of grout-filled splice sleeve was proposed by making multiple regression analyses of which independent variables are embedment length of reinforcing bars and compressive strength of mortar. This equation predicted the measured bond capacity of this test more accurately than existing equations and eliminated the deviation according to the embedment length of reinforcing bars.

A Study on the Engineering Properties of Grout Materials Using a Magnetic Field Treated Water (자화수를 사용한 주입재의 공학적 특성에 관한 연구)

  • Chun, Byung-Sik;Park, Doo-Hee;Yang, Hyung-Chil;Jung, Jong-Ju;Lee, Sang-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1195-1203
    • /
    • 2006
  • Water that is treated by passing through a magnetic field of certain strength is called Magnetic Field Treated Water(MFTW). Previous research indicate that use of MFTW can save 5% of cement dosage, decrease bleeding of concrete, and improve resistance to freezing. The reason why MFTW can improve characteristics of concrete can be explained by the molecular structure of water. Magnetic force can break apart water clusters into single molecules or smaller ones, therefore, the activity of water is improved. While hydration of cement particles is in progress, the MFTW can penetrate the core region of cement particles more easily. Hence, hydration takes place more efficiently which in turn improves concrete compressive strength. Test results demonstrate that the compressive strength of the sodium silicate cement grout homogel increases by approximately 20 - 50% by using the MFTW.

  • PDF

The Effects of Curing Environment and Submerged Pump Pressure on the Strength of High-Strength Grout (양생환경 및 수중펌프압송이 고강도 그라우트의 강도에 미치는 영향)

  • Kim, Beom-Hwi;Son, Da-Som;Yi, Chong-Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.191-192
    • /
    • 2023
  • In recent years, the use of high-strength grout has gained popularity in offshore wind power generation complexes for facility foundations and bridges. These marine wind farms require support for horizontal loads from wind and waves. To ensure the strength of the grout produced in environments similar to the actual placing site, this study investigated the curing of high-strength grout discharged through pump pressure in various environments, and examined the difference in strength according to different variables. Compressive strength measurements revealed that the core specimen collected from the bottom (3cm) and uppermost (50cm) of the specimen exhibited lower strength compared to other height specimens, while the core specimen obtained from the corner exhibited lower strength compared to the center. These findings suggest that the strength difference between the center and the corner is more pronounced when curing at low temperatures. This effect is greater than the strength reduction that typically occurs during low-temperature curing, and thus, necessitates careful attention in similar construction environments.

  • PDF

A Study on Hardening Behavior of Colloidal Silica-Cement Grout (실리카졸-시멘트 그라우트의 고결특성에 대한 연구)

  • Kim, Young-Hun;Kim, Hae-Yang;Hyun, Ho-Gyu;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.529-534
    • /
    • 2009
  • This study had propose that a characteristic of recently developed Silicasol to make a close in this study, grouting material usually used portland cement and a characteristic is compared between Silicasol and sodium silicate in this study, examined strength and environmentally friendly for compare characteristics of sodium silicate and Silicasol through unconfined compressive strength, SEM analysis, Permeability test, Chemical Resistance test, leaching test etc. In the test, I gained that unconfined compressive strength of Silicasol three times promoted than sodium silicate Within 72 hours and I gined through analysis of SEM that Silicasol is more compactivetive than sodium silicate. In the result of test, it was found to be a environmentally friendly material as the toatal amount of eluviated elementary had small quantity.

  • PDF

Temperature and humidity effects on behavior of grouts

  • Farzampour, Alireza
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.659-669
    • /
    • 2017
  • Grouts compared to other material sources, could be highly sensitive to cold weather conditions, especially when the compressive strength is the matter of concern. Grout as one the substantial residential building material used in retaining walls, rebar fixation, sidewalks is in need of deeper investigation, especially in extreme weather condition. In this article, compressive strength development of four different commercial grouts at three temperatures and two humidity rates are evaluated. This experiment is aimed to assess the grout strength development over time and overall compressive strength when the material is cast at low temperatures. Results represent that reducing the curing temperature about 15 degrees could result in 20% reduction in ultimate strength; however, decreasing the humidity percentage by 50% could lead to 10% reduction in ultimate strength. The maturity test results represented the effect of various temperatures and humidity rates on maturity of the grouts. Additionally, the freeze-thaw cycle's effect on the grouts is conducted to investigate the durability factor. The results show that the lower temperatures could be significantly influential on the behavior of grouts compared to lower humidity rates. It is indicated that the maturity test could not be valid and precise in harsh temperature conditions.