• Title/Summary/Keyword: group velocity dispersion (GVD)

Search Result 22, Processing Time 0.032 seconds

High-power SESAM Mode-locked Yb:KGW Laser with Different Group-velocity Dispersions

  • Park, Byeong-Jun;Song, Ji-Yeon;Lee, Seong-Yeon;Yee, Ki-Ju
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.407-412
    • /
    • 2022
  • We report on a diode-laser-pumped mode-locked Yb:KGW laser system, which delivers ultrashort pulses down to 89 fs at a repetition rate of 63 MHz, with an average power of up to 5.6 W. A fiber-coupled diode laser at 981 nm, operated with a compact driver, is used to optically pump the gain crystal via an off-axis parabolic mirror. A semiconductor saturable-absorber mirror is used to initiate the pulsed operation. Laser characteristics such as the pulse duration, spectrum bandwidth, and output power are investigated by varying the intracavity dispersions via changing the number of bounces between negative-dispersive mirrors within the cavity. Short pulses with a duration of 89 fs, a center wavelength of 1,027 nm, and 3.6 W of output power are produced at a group-velocity dispersion (GVD) of -3,300 fs2. As the negative GVD increases, the pulse duration lengthens but the output power at the single-pulse condition can be enhanced, reaching 5.6 W at a GVD of -6,600 fs2. Because of pulse broadening at high negative GVDs, the highest peak intensity is achievable at a moderate GVD with our system.

Optimal Net Residual Dispersion for Compensation of WDM Signals in Dispersion Managed Optical Links with Random Distribution of SMF Length and RDPS (중계 구간의 SMF 길이와 RDPS의 분포가 랜덤한 분산 제어 광전송 링크에서의 WDM 신호의 보상을 위한 최적 전체 잉여 분산)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.638-641
    • /
    • 2012
  • Optimal net residual dispersion (NRD) and effective launching power range of optical transmission links with random distribution of single mode fiber (SMF) length and residual dispersion per span (RDPS) required to flexibly design of optical links in dispersion management (DM) technique for compensating the distorted 960 Gbps optical signals due to interaction of group velocoty dispersion (GVD) and optical nonlinear effects are induced.

  • PDF

Compensation for WDM Signals through Artificial Distribution of SMF Length and RDPS in Optical Links with Dispersion Management and Optical Phase Conjugation (분산 제어와 광 위상 공액이 적용된 광 전송 링크에서 인위적인 분포의 SMF 길이와 RDPS를 통한 WDM 신호의 보상)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.655-658
    • /
    • 2012
  • Optimal net residual dispersion (NRD) and distribution pattern of (SMF) length and residual dispersion per span (RDPS) in optical transmission links with artificial distribution of SMF length and RDPS required to flexibly design of optical links in dispersion management (DM) technique for compensating the distorted 960 Gbps optical signals due to interaction of group velocoty dispersion (GVD) and optical nonlinear effects are induced.

  • PDF

System Performance Depending on the Fiber Span Number in Dispersion Managed Optical Transmission Links with Uniform Distributions of SMF Lengths and Residual Dispersion Per Span (SMF 길이와 RDPS가 분포가 균일한 분산 제어 광전송 링크에서 광섬유 중계 구간 수에 따른 시스템 성능)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.620-621
    • /
    • 2015
  • The system performances of WDM channel signals as a function of the number of fiber spans in optical link with the uniform distributions of single mode fiber (SMF) lengths and residual dispersion per span (RDPS) for the compensation for the distorted WDM signals due to the group velocity dispersion (GVD) are evaluated and compared.

  • PDF

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

System Performance Depending on the Artificial Distributions of RDPS in 80 km × 50 Spans Dispersion Managed Optical Transmission Links (80 km × 50 Spans 분산 제어 광전송 링크에서 RDPS가 인위적 분포 패턴에 따른 시스템 성능)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.625-626
    • /
    • 2015
  • The optimal distribution pattern for the compensation for the distorted WDM signals due to the group velocity dispersion (GVD) and the nonlinear Kerr effects is induced in $80km{\times}50spans$ optical link with an artificial distributions of single mode fiber (SMF) lengths and residual dispersion per span (RDPS).

  • PDF

Performance of WDM Signals in Optical Links with Random Distribution of Residual Dispersion Per Span only in Half Transmission Section of Total Length (전송 반 구획에서만 중계 구간 당 분산이 랜덤하게 분포하는 광 링크에서의 WDM 신호의 성능)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.440-448
    • /
    • 2012
  • Optimal net residual dispersion (NRD) and effective launching power range of optical transmission links with optical phase conjugator (OPC) and dispersion management (DM) for compensating the distorted wavelength division multiplexing (WDM) signals due to interaction of group velocity dispersion (GVD) and optical nonlinear effects. WDM systems considered in this research have optical links with the random distribution of residual dispersion per span (RDPS) in each single mode fiber (SMF) spans of only one half transmission section for designing the adaptive optical transmission system configurations. It is confirmed that optimal NRD is 10 ps/nm and effective launching power range is obtained to be -8~1 dBm under NRD = 10 ps/nm in optical links with total dispersion controlled by precompensation. And, it is also confirmed that optimal NRD is -10 ps/nm and effective launching power range is obtained to be -7.5~1 dBm under NRD = -10 ps/nm in optical links with total dispersion controlled by postcompensation.

Compensation for Distorted WDM Signals Through Dispersion Managed Optical Transmission Links with Ununiform Distribution of SMF Length and RDPS of Optical Fiber Spans (중계 구간의 SMF 길이와 RDPS 분포가 일정하지 않은 분산 제어 광전송 링크를 통한 왜곡된 WDM 신호의 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.801-809
    • /
    • 2012
  • Dispersion management (DM) is the typical technique compensating for the distorted signals due to interaction of group velocity dispersion (GVD) and optical nonlinear effects for transmitting wavelength division multiplexed (WDM) channel with the excellent performance. Optimal net residual dispersion (NRD) and effective launching power range of optical transmission links with random distribution and artificial distribution of single mode fiber (SMF) length and residual dispersion per span (RDPS) required to flexibly design of optical links in DM. It is confirmed that optimal net residual dispersion (NRD) are +10 ps/nm and -10 ps/nm controlled by precompensation and postcompensation, respectively, in both of the considered distribution patterns of SMF length and RDPS. And, in optimal NRD, system performance in optical links with the descending distribution of SMF length and the ascending distribution of RDPS among the artificial distribution patterns are more improved, consequently, effective launching power range is expanded by almost 2 dB than those in optical links with the uniform distribution.

Dispersion Compensation in the Optical Fiber Transmission system using the Fiber Bragg Grating (FBG를 이용한 광 파이버 분산 보상에 관한 연구)

  • 신희성;홍성철;손용환;이종윤;이창원;정진호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.81-84
    • /
    • 2001
  • We propose the cascade FBG(Fiber Bragg Grating)s to compensate the dispersion, discuss the dispersion characteristics of such cascaded FBGs, compare with the single FBG dispersion compensator. For these, we theoretically consider the sencond- and third-order group-velocity dispersion(GVD) in the single fiber grating using plane wave solution and the coupled mode equation. We also theoretically find the group-velocity dispersion in the cascaded fiber gratings from the results in the single fiber grating and present the optimum disign data of the cascaded FBGs dispersion compensator in the N-channel WDM system through the numerical simulation.

  • PDF

Dispersion-managed Transmission Links with the Non-midway Optical Phase Conjugator (Non-midway 광 위상 공액기를 갖는 분산 제어 링크)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.744-746
    • /
    • 2017
  • The maximum number of fiber spans is induced in disoersion-managed optical links with the non-midway optical phase conjugator (OPC) for the compensation of the distorted WDM signals due to the group velocity dispersion (GVD) are evaluated and compared.

  • PDF