• 제목/요약/키워드: group piles

검색결과 192건 처리시간 0.019초

Effect on Dynamic Behavior of Group Piles with Changing Thickness of Pile Cap

  • Jeong, Kusic;Ahn, Sangro;Kim, Seongho;Ahn, Kwangkuk
    • 한국지반환경공학회 논문집
    • /
    • 제19권7호
    • /
    • pp.5-11
    • /
    • 2018
  • Instead of a single pile, group piles are usually used for the pile foundation. If the earthquake occurs in the ground where group piles are installed, dynamic behavior of group piles are affected not only by interaction of piles and the ground movement but also by the pile cap. However, in Korea, the pile cap influence is not taken account into the design of group piles. Research on dynamic behavior of group piles has been performed only to verify interaction of piles and the ground and has not considered the pile cap as a factor. In this research, 1g shaking table model tests were performed to verify the thickness of the pile cap affects dynamic behavior of group piles that were installed in the ground where the earthquake would occur. The test results show that, as thickness of the pile cap increased, acceleration and horizontal displacement of the pile cap decreasd while vertical displacement of the pile cap increased. The results also showed that, among the group files tested, acceleration, horizontal displacement, and vertical displacement of the bearing pile are smaller than those of the friction pile.

인발력을 받는 무리말뚝의 응력-변위 특성 (Characteristics of Stress-Displacement on Uplift Loaded Group Piles)

  • 이준대;안병철
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.152-157
    • /
    • 2005
  • This experimental study was devoted to investigate skin friction of H group piles with uplift loading conditions in granite soil under laboratory test. Model piles made of steel embedded in weathered granite soil were used in this study. Pile arrangements($2{\times}2,\;3{\times}3$), pile space(2D, 4D, 6D), and soil density($D_r=40%,\;80%$) were tested. The main results obtained from the model tests can be summarized as follows. The series of tests found that ultimate uplift load and displacement for group piles were increased as piles space ratio increases to $D_r=40%$ of soil density. In the relative density of $D_r=80%$, bearing capacity for group piles was greater than for single pile. In the relative density of $D_r=40%$, the theoretical value of skin friction for group piles was greater than practical value. In the relative density of $D_r=80%$, both theoretical and practical value of skin friction for group piles were increased as piles space ratio increases.

Numerical comparison of bearing capacity of tapered pile groups using 3D FEM

  • Hataf, Nader;Shafaghat, Amin
    • Geomechanics and Engineering
    • /
    • 제9권5호
    • /
    • pp.547-567
    • /
    • 2015
  • This study investigates the behavior of group of tapered and cylindrical piles. The bearing capacities of groups of tapered and cylindrical piles are computed and compared. Modeling of group of piles in this study is conducted in sand using three-dimensional finite element software. For this purpose, total bearing capacity of each group is firstly calculated using the load-displacement curve under specific load and common techniques. Then, the model of group of piles is reloaded under this calculated capacity to find group settlements, stress states on the lateral surfaces of group block, efficiency of group and etc. In order to calculate the efficiency of each group, single tapered and cylindrical piles are modeled separately. Comparison for both tapered and cylindrical group of piles with same volume is conducted and a relation to predict tapered pile group efficiency is developed. A parametric study is also performed by changing parameters such as tapered angle, angle of internal friction of sand, dilatancy angle of soil and coefficient of lateral earth pressure to find their influences on single pile and pile group behavior.

무리말뚝 시공의 영향 (The effect of group pile installation)

  • 이명환;홍헌성;김성회;전영석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1303-1311
    • /
    • 2006
  • Most of the piles are designed as group piles. In certain geotechnical environments, the installation of group piles causes heaving of the already installed piles. The unfavorable effects of pile heaving on pile bearing capacity have been well known to field engineers. However not many engineers pay enough attention to this subject. According to our recent researches, not only the bearing capacity but also the pile material could be seriously damaged due to the installation of nearby piles, especially with the cases of precast concrete piles. When the pull-out force due to installation of neighboring piles acting on the already installed precast concrete pile exceeds the shaft friction, pile heaving occurs. At the same time, if the pull-out force exceeds the allowable tensile strength of the precast concrete pile, tensile failure is inevitable, which is critical for the pile integrity. In other cases the pile material was not damaged but serious relaxation occurred as the results of pile heaving. In this paper, the pull-out mechanism due to the installation of group piles is explained.

  • PDF

해진시 개단무리말뚝의 거동에 관한 모형실험 연구 (An Experimental Study on the Behavior of Open-ended Pipe Piles Ggroup to the Simulated Seaquake)

  • 남문석;최용규;김재현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.447-454
    • /
    • 1999
  • The compressive capacity and the soil plugging resistance of single open-ended pipe pile were completely decreased in the previous study on the behavior of shorter single pile during simulated seaquake induced by the vertical component of earthquake. But the capacity of single open-ended pipe pile with greater penetration and the capacity of piles group with shorter penetration were expected to be stable after seaquake motion. In this study, first, 2-piles or 4-piles are driven into the calibration chamber included in saturated fine medium sand with several simulated penetrations, and the compressive load test for each piles group was performed. Then, about 95 % compressive load of the ultimate capacity was applied on the pile head during the simulated seaquake motion. Finally, In confirm the reduction of pile capacity during the simulated seaquake motion, the compressive load test for each single pile or piles group after seaquake motion was performed. During the simulated seaquake, the compressive capacity of open-ended pipe piles with greater penetration ( 〉about 27 m) was not degraded even in deep sea deeper than 220 m and soil plug within open-ended pipe pile installed in deep sea was stable after seaquake motion. Also, in the case of 2-piles or 4-pile groups, the compressive capacity after seaquake motion was not degraded at all regardless of pile penetration depth beneath seabed, sea water depth and seaquake frequency.

  • PDF

압축하중을 받는 무리말뚝의 주면지지력 특성 (Characteristics of Skin Friction on Compression Loaded Group Piles)

  • 안병철;이준대
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.95-100
    • /
    • 2004
  • H-pile can be more easily driven than pipe pile by pile driver and shows high skin friction and plugging effect. And lately It is well grown that the high strength H-pile has been widely used f3r pile foundations. To compare the skin frictions of H piles under different density soil conditions, this paper presents results of a series of model tests on vertically loaded group piles. Model piles made of steel embedded in weathered granite soil were used in this study. Pile arrangements $(2\times2,\;3\tunes3)$, pile space(2D, 4D, 6D), and soil density$(D_r=40\%,\;80\%)$ were tested. The main results obtained from the model tests can be summarized as follows. The series of tests found that compression load for group piles increases as number of piles increase and piles space ratic decrease to $D_r=40\%$ of soil density. The analysis also found that the theoretical value of skin friction for group piles is greater than practical value as piles space ratio increases to $D_r=40\%$ of soil density. Piles showed the greatest difference of the skin friction in case that the pile space ratio(S/D) is 6. The theoretical value by Meyerhof and DM-7 showed 1.83 times and 1.32 times respectively as great as practical value in case of S/D=6 and $2\times2$.

Effect of pile group geometry on bearing capacity of piled raft foundations

  • Fattah, Mohammed Y.;Yousif, Mustafa A.;Al-Tameemi, Sarmad M.K.
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.829-853
    • /
    • 2015
  • This is an experimental study to investigate the behaviour of piled raft system in different types of sandy soil. A small scale "prototype" model was tested in a sand box with load applied to the foundation through a compression jack and measured by means of load cell. The settlement was measured at the raft by means of dial gauges, three strain gauges were attached on piles to measure the strains and calculate the load carried by each pile in the group. Nine configurations of group ($1{\times}2$, $1{\times}3$, $1{\times}4$, $2{\times}2$, $2{\times}3$, $2{\times}4$, $3{\times}3$, $3{\times}4$ and $4{\times}4$) were tested in the laboratory as a free standing pile group (the raft not in contact with the soil) and as a piled raft (the raft in contact with the soil), in addition to tests for raft (unpiled) with different sizes. It is found that when the number of piles within the group is small (less than 4), there is no evident contribution of the raft to the load carrying capacity. The failure load for a piled raft consisting of 9 piles is approximately 100% greater than free standing pile group containing the same number of piles. This difference increases to about 4 times for 16 pile group. The piles work as settlement reducers effectively when the number of piles is greater than 6 than when the number of piles is less than 6. The settlement can be increased by about 8 times in ($1{\times}2$) free standing pile group compared to the piled raft of the same size. The effect of piled raft in reducing the settlement vanishes when the number of piles exceeds 6.

유전자 알고리즘을 이용한 조립토 다짐 군말뚝의 최적설계 (Optimum Design for Granular Compaction Group Piles Using the Genetic Algorithm)

  • 김홍택;황정순;김찬동;강윤
    • 한국지반환경공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.13-25
    • /
    • 2004
  • 조립토 다짐말뚝 공법은 비교적 강성이 큰 쇄석, 자갈 및 모래 등과 같은 조립질 재료를 사용하여 원지반을 치환하여 보강하는 공법으로, 기초지반의 침하를 감소시키며, 연약지반의 지지력 증가 및 압밀배수를 촉진하고, 또한 지진에 의한 액상화의 방지에도 효과가 큰 공법으로 알려져 있으나, 국내에서는 아직 널리 사용되지 않고 있다. 본 연구에서는 유전자 알고리즘을 이용하여 군형태의 조립토 다짐말뚝에 대한 최적배치 기법을 제시하고자 한다. 분석결과, 조립토 말뚝의 배치가 중앙부에 집중될 때 조립토 군말뚝의 지지력은 증가하는 것으로 나타났다. 또한 경제적인 측면을 고려하여 조립토 군말뚝의 총중량에 대한 최적설계를 수행하였으며, 조립토 군말뚝 설계변수의 변화가 최적설계에 미치는 영향을 알아보기 위해 parametric study를 수행하였다.

  • PDF

Behavior of piled rafts overlying a tunnel in sandy soil

  • Al-Omari, Raid R.;Al-Azzawi, Adel A.;AlAbbas, Kadhim A.
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.599-615
    • /
    • 2016
  • The present research presents experimental and finite element studies to investigate the behavior of piled raft-tunnel system in a sandy soil. In the experimental work, a small scale model was tested in a sand box with load applied vertically to the raft through a hydraulic jack. Five configurations of piles were tested in the laboratory. The effects of pile length (L), number of piles in the group and the clearance distance between pile tip and top of tunnel surface (H) on the load carrying capacity of the piled raft-tunnel system are investigated. The load sharing percent between piles and rafts are included in the load-settlement presentation. The experimental work on piled raft-tunnel system yielded that all piles in the group carry the same fraction of load. The load carrying capacity of the piled raft-tunnel model was increased with increasing (L) for variable (H) distances and decreased with increasing (H) for constant pile lengths. The total load carrying capacity of the piled raft-tunnel model decreases with decreasing number of piles in the group. The total load carrying capacity of the piles relative to the total applied load (piles share) increases with increasing (L) and the number of piles in the group. The increase in (L/H) ratio for variable (H) distance and number of piles leads to an increase in piles share. ANSYS finite element program is used to model and analyze the piled raft-tunnel system. A three dimensional analysis with elastoplastic soil model is carried out. The obtained results revealed that the finite element method and the experimental modeling are rationally agreed.

블록식 방파제의 수평저항력 평가를 위한 실내모형실험 I : 무리말뚝으로 보강된 복합 블록의 거동 (Small Scale Modelling Experiments for Evaluating Lateral Resistance of Block-Type Breakwater I : Complex Blocks with Group Piles)

  • 강기천;김지성
    • 한국지반신소재학회논문집
    • /
    • 제20권4호
    • /
    • pp.95-103
    • /
    • 2021
  • 기존의 말뚝기초는 상부구조물을 지지하거나, 토압을 감소시키는 역할이었다면, 최근에는 상부구조물과 일체화되어 수평저항력을 높이는 사례들이 있다. 따라서, 본 연구는 여러 개의 말뚝으로 보강된 블록 형식의 방파제에 대해 실내모형실험을 수행하였고, 수평저항력을 평가하였다. 실험에서는 말뚝이 근입된 깊이를 변화시켜 말뚝의 수평저항력과 말뚝의 위치별 휨모멘트를 측정하였다. 그 결과 무리말뚝의 근입깊이가 깊어짐에 따라 수평저항력이 커짐을 알 수 있었다. 특히 사석층까지 무리말뚝이 관입된 경우가 블록내에 관입된 경우보다 수평저항력이 1.52배 크게 나타났다. 휨모멘트의 경우 후열말뚝이 전열말뚝보다 크게, 바깥쪽 말뚝이 안쪽 말뚝보다 크게 나타났다. 지반내에서 최대 휨모멘트의 발생 위치는 사석층과 원지반의 경계면에서 나타났다.