• 제목/요약/키워드: group of pile

검색결과 246건 처리시간 0.024초

Incremental filling ratio of pipe pile groups in sandy soil

  • Fattah, Mohammed Y.;Salim, Nahla M.;Al-Gharrawi, Asaad M.B.
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.695-710
    • /
    • 2018
  • Formation of a soil plug in an open-ended pile is a very important factor in determining the pile behavior both during driving and during static loading. The degree of soil plugging can be represented by the incremental filling ratio (IFR) which is defined as the change in the plug length to the change of the pile embedment length. The experimental tests carried out in this research contain 138 tests that are divided as follows: 36 tests for single pile, 36 tests for pile group ($2{\times}1$), 36 tests for pile group ($2{\times}2$) and 30 pile group ($2{\times}3$). All tubular piles were tested using the poorly graded sand from the city of Karbala in Iraq. The sand was prepared at three different densities using a raining technique. Different parameters are considered such as method of installation, relative density, removal of soil plug with respect to length of plug and pile length to diameter ratio. The soil plug is removed using a new device which is manufactured to remove the soil column inside open pipe piles group installed using driving and pressing device. The principle of soil plug removal depends on suction of sand inside the pile. It was concluded that the incremental filling ratio (IFR) is changed with the changing of soil state and method of installation. For driven pipe pile group, the average IFR for piles in loose is 18% and 19.5% for L/D=12 and 15, respectively, while the average of IFR for driven piles in dense sand is 30% and 20% for L/D=12 and L/D=15 respectively. For pressed method of pile installation, the average IFR for group is zero for loose and medium sand and about 5% for dense sand. The group capacity increases with the increase of IFR. For driven pile with length of 450 mm, the average IFR % is about 30.3% in dense sand, 14% in medium and 18.3% for loose sand while when the length of pile is 300 mm, the percentage equals to 20%, 17% and 19.5%, respectively.

군쇄석다짐말뚝의 지지력 특성에 관한 연구 (A Study on Bearing Capacity Characteristics of Group Crushed-Stone Compaction Piles)

  • 황근배;이민희;신현철;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.705-712
    • /
    • 2005
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, a necessity of an alternative method is suggested. In this study, the static load tests for group crushed-stone compaction piles which were constructed at in-situ site were performed. Pile diameter was 700mm and area of loading plates were changed. The static load tests of single and group piles were performed for area replacement ratio of 20, 30 and 40%. Based on test results, bearing capacity of group crushed-stone compaction pile were estimated. The more both single pile and group pile increase, the more yield bearing capacity tended to increase. Also, the yield bearing capacity of a group pile is about 50% less than the yield bearing capacity of a single pile. If the ground reinforced with the crushed-stone compaction pile is replacement ratio of $20{\sim}40%$, RIYB of both single pile and group pile increases qualitative tendency of linear more than original ground

  • PDF

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

동적 수치해석 결과를 이용한 군말뚝의 횡방향 동적 P-승수 산정 (Estimation of Lateral Dynamic P-multiplier of Group Pile Using Dynamic Numerical Analysis Results)

  • 박정식;정상섬
    • 대한토목학회논문집
    • /
    • 제38권4호
    • /
    • pp.567-578
    • /
    • 2018
  • 본 연구는 기존에 동적하중에 의한 군말뚝의 응력감소효과를 알아보기 위하여 동적 p-y곡선을 수립하고, 이를 통하여 동적 p-승수를 산정하고자 하였다. 이를 위하여 건조 사질토 지반에서 $2{\times}2$ 군말뚝, 단말뚝 및 $5{\times}5$ 군말뚝, 단말뚝에 대해 말뚝-지반시스템 하부에 정현파를 입력, 동적 수치해석을 수행하였다. 이때 군말뚝의 경우, 말뚝의 중심간격을 말뚝 지름의 2.5배, 5.0배로 변화시켜 해석을 실시하였다. 동적 수치해석결과에 따라 단말뚝과 군말뚝의 동적 p-y 곡선을 작성 및 비교를 하여, 말뚝 중심 간격 및 군말뚝 말뚝의 열위치에 따른 말뚝의 동적 군말뚝 효과를 분석하였다. 해석 결과 동적 p-승수 값은 좌표원점을 기준으로 대칭성을 보였으며, 그 값은 $5{\times}5$ 군말뚝(말뚝간격=2.5D), 단말뚝의 경우 군말뚝의 말뚝번호 3, 말뚝번호 23에서 0.26 ~ 0.30, 말뚝번호 13에서 0.14, 말뚝번호 8, 말뚝번호 18에서 0.07 ~ 0.14로 나타났다. 이 값들은 특히 하중조건이 달라서 정적 p-승수와 차이를 보였으며, 향후 다양한 종류의 입력 동하중을 통한 동적 p-승수($P_{dm}$) 산정을 통해 토목기초 구조물의 군말뚝-지반 시스템의 동적설계나 해석에 이용하는 것이 바람직하다고 판단된다.

사질토 지반에서 말뚝의 수평거동 (Lateral Behavior of Sin811e and Group Piles in Sand)

  • 김영수;김병탁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.3-44
    • /
    • 1999
  • This paper discusses the lateral behavior of single and group piles in homogeneous and non-homogeneous(two layered) soil. In the single pile, the model tests were conducted to investigate the effects on ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer, boundary rendition of pile head and tip, embedded pile length, pile construction condition, ground condition with saturate and moisture state in Nak-Dong river sand. Also, in the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, boundary condition of pile head and tip, eccentric load and ground condition. The maximum bending moment and deflection induced in active piles were found to be highly dependent on the relative density, pile construction condition, boundary condition of pile head and tip. Based on the results obtained, it was found that the decrease of lateral bearing capacity in saturated sand was in the range of 31% - 53% as compared with the case of dry sand. Also, in the group pile, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8%, and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. In this study, the program is developed by using the modified Chang method which used p - y method and the exact solution of governing equation of pile and it can be used to calculate the deflection, bending moment and soil reaction with FDM in non-homogeneous soil. In comparing the modified Chang method with field test results, the predict results shows better agreement with measured results in field tests.

  • PDF

Dynamic response of pile groups in series and parallel configuration

  • Sawant, V.A.;Ladhane, K.B.
    • Structural Engineering and Mechanics
    • /
    • 제41권3호
    • /
    • pp.395-406
    • /
    • 2012
  • Basic problem of pile foundation is three dimensional in nature. Three dimensional finite element formulation is employed for the analysis of pile groups. Pile, pile-cap and soil are modeled using 20 node element, whereas interface between pile or pile cap and soil is modeled using 16 node surface element. A parametric study is carried out to consider the effect of pile spacing, number of piles, arrangement of pile and soil modulus on the response of pile group. Results indicate that the response of pile group is dependent on these parameters.

무리말뚝 시공의 영향 (The effect of group pile installation)

  • 이명환;홍헌성;김성회;전영석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1303-1311
    • /
    • 2006
  • Most of the piles are designed as group piles. In certain geotechnical environments, the installation of group piles causes heaving of the already installed piles. The unfavorable effects of pile heaving on pile bearing capacity have been well known to field engineers. However not many engineers pay enough attention to this subject. According to our recent researches, not only the bearing capacity but also the pile material could be seriously damaged due to the installation of nearby piles, especially with the cases of precast concrete piles. When the pull-out force due to installation of neighboring piles acting on the already installed precast concrete pile exceeds the shaft friction, pile heaving occurs. At the same time, if the pull-out force exceeds the allowable tensile strength of the precast concrete pile, tensile failure is inevitable, which is critical for the pile integrity. In other cases the pile material was not damaged but serious relaxation occurred as the results of pile heaving. In this paper, the pull-out mechanism due to the installation of group piles is explained.

  • PDF

선단 하부지반 그라우팅된 개단강관말뚝의 연직 지지력에 관한 연구 (Study on the Vertical Pile Capacity of Base-grouted Pile)

  • 정두환;최용규;정성교
    • 한국지반공학회논문집
    • /
    • 제15권2호
    • /
    • pp.165-180
    • /
    • 1999
  • 모형 압력 토조에 개단, 폐단, 관내토 그라우팅, 그리고 선단 하부지반 그라우팅 말뚝들을 설치하여 수행된 재하실험을 통해 그 지지력을 비교하였고, 유사화된(Simulated) 해진시 말뚝의 설치깊이를 변화시켜 선단 하부지반 그라우팅 말뚝의 안정성을 검토하였다. 또한, 재하실험과 해진 실험은 2개와 4개로 된 군말뚝에 대해서도 수행되었다. 관내토 선단부만 그라우팅한 말뚝의 지지력은 선단 지반 교란으로 인한 선단지지력 감소로 개단말뚝에 비해 극한지지력이 약 11.2~30.8%정도 작았다. 관내토 선단 하부지반 그라우팅한 말뚝의 지지력은 개단말뚝의 지지력보다 약 23.8~33.9%정도 증가하였으며, 이는 폐단말뚝의 지지력과 비슷하였다. 선단 하부지반 그라우팅된 군말뚝은 개단 군말뚝에 비해 증가하였는데, 2개의 군말뚝의 경우에는 14.6~31.8%만큼 지지력이 증가하였으며, 4개의 군말뚝의 경우는 15.3~22.4%만큼 증가하였다. 심해에서 발생된 해진시 관내토 선단 하부지반 그라우팅된 개단말뚝의 안정성은 말뚝의 설치 형태와 말뚝의 지중관입 길이에 따라 달라졌다. 외말뚝의 경우에는 지중 관입 깊이가 20m보다 깊어지면 안정한 상태를 유지할 수 있었으나, 12m보다 짧은 말뚝은 파괴될 수 있었고, 12m보다 긴 말뚝의 경우에는 가동(Mobility) 상태를 유지할 수 있었다. 군말뚝의 경우에는 지중 관입깊이가 7m이상이면 지지력의 일부만 감소하여 약간 변위하는 "Mobility" 상태를 유지할 수 있었다.유지할 수 있었다.

  • PDF

P - multiplier 방법을 적용한 군말뚝의 수평거동 예측 (Prediction For Lateral Behavior of Group file Using P - Multiplier)

  • 김병탁;김영수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.253-260
    • /
    • 2000
  • Pile foundations have been widely used in civil engineering construction for many years. Structures subjected to large lateral loads usually have pile foundations as shallow foundations cannot sometimes support the moments on these structure. The purpose of this paper is to propose the p - multiplier factor (P$\sub$M/) based on the characteristics of behavior of laterally loaded group pile in homogeneous sand. For this, a series of model tests are performed and the composite analytical method proposed by author is used to the propose P$\sub$M/. Based on the model test results of the large number of laterally loaded group piles, p - multiplier factors for homogeneous sand are proposed by back analysis under various condition of soil density, spacing-to-diameter ratio of pile, number of pile, and spacing-to-diameter of pile. P - multiplier approach provides a simple but sufficient tool for characterizing the shadowing group effects of laterally loaded group pile.

  • PDF

모형시험을 통한 무리말뚝 내 단독말뚝의 위치별 부주면마찰력에 관한 연구 (A Study on the Negative Skin Friction Depending upon the Locations of Piles in a Group Using Model Test)

  • 임종석;박종희;심종선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1077-1087
    • /
    • 2010
  • Generally most of pile foundations are constructed with group pile rather than single pile. The study on efficiency and bearing capacity which are major elements for rational design of this group pile has been actively progressed, whereas there are truly only a few studies of negative skin friction working on group pile due to the consolidation of ground. The purpose of this study is to determine, among the elements of negative skin friction applied to pile, the occurrence modality of negative skin friction at center, side, and corner of $3{\times}3$ group pile using model test and, based on those observations, to propose the effective design direction of group pile.

  • PDF