• Title/Summary/Keyword: groundwater use and discharge

Search Result 40, Processing Time 0.031 seconds

Analysis of Groundwater Variations using the Relationship Between Groundwater use and Daily Minimum Temperature in a Water Curtain Cultivation Site (수막재배지역에서 일최저기온과 지하수 이용량의 상관관계를 이용한 지하수위 변화 분석)

  • Chang, Sunwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • Water curtain cultivation (WCC) systems in Korea have depleted water resources in shallow aquifers through massive pumping of groundwater. The goal of this study is to simulate the groundwater variations observed from massive groundwater pumping at a site in Cheongweon. MODFLOW was used to simulate three-dimensional regional groundwater flow, and the SWAT (Soil and Water Assessment Tool) watershed hydrologic model was employed to introduce temporal changes in groundwater recharge into the MODFLOW model input. Additionally, the estimation method for groundwater discharge in WCC areas (Moon et al., 2012) was incorporated into a groundwater pumping schedule as a MODFLOW input. We compared simulated data and field measurements to determine the degree to which winter season groundwater drawdown is effectively modeled. A simulation time of 107 days was selected to match the observed groundwater drawdown from November, 2012 to March, 2013. We obtained good agreement between the simulated drawdown and observed groundwater levels. Thus, the estimation method using daily minimum temperatures, may be applicable to other cultivation areas and can serve as a guideline in simulating the regional flow of riverside groundwater aquifers.

Impacts of Nitrate in Base Flow Discharge on Surface Water Quality (질산성 질소 기저유출이 지표수 수질에 미치는 영향)

  • Kim, Geonha;Lee, Hosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.105-109
    • /
    • 2009
  • It is a well known fact that baseflow discharge of rainfall runoff impacts on water quality of surface water significantly. In this paper, impacts of nitrate discharged as base flow on stream water quality were studied by using a software, PULSE from USGS to calculate monthly ground water discharge from hydrograph. We used water quality and flow rate data for Ghapcehon2 site in Daejeon city for year 2005 as well as ground water quality data in the watershed acquired from government agencies. Agricultural and forestry land use are dominant for upstream of Ghapcheon2 in the watershed. Base flow contributes about 85~95% of stream flows during spring and fall while 25~38% of stream flow was induced by base flow during summer and winter. Monthly nitrate loading discharged as base flow for Ghapcheon2 was estimated by using averaged nitrate concentration of groundwater in the watershed. Nitrate loading induced by base flow at Ghapcheon2 was estimated as 5.4 ton of $NO_{3}{^-}-N/km^{2}$, which is about 60% of nitrate loading of surface water, 9.2 ton of $NO_{3}{^-}-N/km^{2}$. Seasonal variation of nitrate concentration of base flow was estimated by dividing monthly nitrate loading by monthly base flow discharge. Nitrate concentration of groundwater was increasing from rainy season. From this study, it can be understood that ground water quality monitoring is important for the proper manage of surface water quality.

Water Quality in a Drainage System Discharging Groundwater from Sangdae-ri Water Curtain Cultivation Area near Musimcheon Stream, Cheongju, Korea (무심천 인근 상대리 수막재배지에서 지하수 사용 후 배출되는 최종 배수로 물의 수질 특성)

  • Moon, Sang-Ho;Kim, Yongcheol;Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.409-420
    • /
    • 2015
  • The Sangdae-ri riverside around Musimcheon stream, flowing through Gadeok-myon of Cheongju City, is one of the representative strawberry fields employing water curtain cultivation (WCC) in Korea. In this area, annual groundwater use for WCC has been calculated by a few methods. On the assumption that all the water flowing through the final ditch may be mostly composed of groundwater, the discharge rate in it can be used as a good proxy for assessing the groundwater use. However, in the study area, the final ditch was set up in an unpaved state near and parallel to Musimcheon stream. Under such circumstances, the drainwater is likely to be influenced by infiltration and/or inflow of nearby stream. Hence, we examined whether or not stream water has influenced water flowing out through the final ditch in respect of ion concentrations or field parameters such as T, pH and electrical conductivity (EC) values. The period of measuring field parameters and sample collection was from February 2012 through February 2015. The drainwater in the final ditch did not show the average quality of groundwater, but similar quality of stream water in respect of pH, EC, ion contents and water type. From this, it is suggested that measuring the flow rate of the final ditch should not be directly used for assessing groundwater use in the study area. In addition, because of its sensitivity to ambient temperature, water temperature proved not to be appropriate for estimating the interaction between ditch and stream. For accuracy, additional methods will be needed to calculate mixing ratios between stream and ground water within drainage system.

Analysis of Hydrological Processes for Musim River Basin by Using Integrated Surface water and Groundwater Model (지표수-지하수 통합모형을 이용한 무심천 유역의 수문과정 해석)

  • Kim, Nam-Won;Chung, Il-Moon;Lee, Jeong-Woo;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.419-430
    • /
    • 2007
  • Integrated modelling of surface water and groundwater has become important to satisfy the growing demands for sustainable water resources and improved water quality. In this study, the integrated model of the semi-distributed watershed model, SWA T and the fully-distributed groundwater flow model, MODFLOW is applied to Musirn river basin for the purpose of investigating its applicability to reproduce watershed-scale hydrological processes. This objective is accomplished by first demonstrating good agreement between the simulated discharge hydrographs with the measured hydrographs for the period of 2001 -2004 while simultaneously calibrating the calculated groundwater level distribution to observation wells. Next, the integrated model is used to evaluate the effect of different temporal precipitation averages on hydrodynamic processes of streamflow, percolation, recharge and groundwater discharge. Moreover, comprehensive simulations are performed to present the relationships between monthly precipitation and each hydrological component, and to analyze the temporal-spatial variability of recharge. The results show that the components are highly interrelated, and that the heterogeneity of watershed characteristics such as subbasin slope, land use, soil type causes a significant spatial variation of recharge. Overall it is concluded that the model is capable of reproducing the temporally and spatially varied surface and subsurface hydrological processes at the watershed scale.

Assessment of Potential Groundwater Resources for Optimal Management of Coastal Groundwater (해안 지하수 최적관리를 위한 개발가능량 산정 기법)

  • Park, Nam-Sik;Hong, Sung-Hun;Seo, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.665-675
    • /
    • 2007
  • An equation is developed to estimate potential groundwater resources available for development. This equation is useful for preliminary planning stages prior to detailed design stages. The equation is a function of major factors such as aquifer characteristics, saltwater intrusion length, coastal groundwater discharge and potential locations of pumping wells. Thus, most important factors are taken into account. The equations are derived using well-known analytical solutions. Thus, the basis is scientifically sound. Use of the equation is quite simple since it is an explicit function of variables. A logical method is proposed to assess a radius of influence of a pumping well considering aquifer characteristics and the pumping rate. Applications to a hypothetical problem and comparison with results from a more rigorous numerical simulation model indicate that results obtained from the proposed equation are conservative.

Coupled Model Development between Groundwater Recharge Quantity and Climate Change Using GIS (GIS를 이용한 기후변화 연동 지하수 함양량 산정 모델 개발 및 검증)

  • Lee, Moung-Jin;Lee, Joung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.36-51
    • /
    • 2011
  • Global climate change is disturbing the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes. In this study, the authors selected a relevant climate change scenario, A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by periodically and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems of ground circulation system, it may be urgent to recalculate the groundwater recharge quantity and consequent change under future climate change. The space-time calculation of changes of the groundwater recharge quantity in the study area may serve as a foundation to present additional measures to improve domestic groundwater resource management.

A study on the improvement measures of livestock manure management and organic fertilizer use in Nonsan area (가축분뇨 관리 및 퇴비·액비 이용에 대한 개선방안 고찰 - 논산지역을 중심으로 -)

  • Jeong, Dong-Hwan;Shin, Jinsoo;Lee, Chulgu;Yu, Soonju;Kim, Yongseok
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.345-359
    • /
    • 2013
  • The Ministry of Environment established a plan for advancement of livestock manure management in July 2011 and finalized the "Comprehensive Measures for Advancement of Livestock Manure Management" in May 2012 complementing and strengthening the plan. In this process, it was necessary to investigate the status of discharge of livestock manure and its environmental impact, for example on rivers, groundwater, arable outflow water and soil. We investigated types of livestock husbandry, discharge of livestock manure, and production and use of organic fertilizers and presented the improvement measures of livestock manure management and organic fertilizer use. First, it is necessary to come up with measures to calculate appropriate density and numbers of livestock animals and prevent overcrowded breeding. Second, as many of the private livestock manure treatment facilities are out-dated and their long-term aerated reaction tanks are not regularly managed, it is necessary to find ways to improve those facilities through inspection and diagnosis. In addition, since existing public treatment facilities are designed to add clean water to belt filter press, additional water is needed. Therefore, it is necessary to improve belt filter press in order to decrease the extra water. Finally, although large-scale organic fertilizer plants and resources recycling centers produce good organic (liquid) fertilizers with proper components, it is necessary to establish standards for maturity of liquid fertilizers in order to facilitate efforts to turn livestock manure into resources.

Assessment of the Impacts of the Impervious Surface Change in the Farm Region on Watershed Hydrology (농경지 불투수면 변화에 따른 유역 수문 영향 분석)

  • Kim, Hak-Kwan;Lee, Eun-Jeong;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.17-23
    • /
    • 2009
  • The Soil and Water Assessment Tool (SWAT) model was used in this study to evaluate the hydrologic impacts by the impervious surface change in the farm region. The model was calibrated and validated by using four years (1999-2002) of measured data for the Gyeongancheon watershed in Korea. The simulation results agreed well with observed values during the calibration and validation periods. Land use scenarios including various changes of the plastic film house area in the farm region were applied to assess their effects on watershed hydrology. The results indicated that the surface direct (5.6%~14.0%) and total runoff (0.8%~1.5%) increased, but the groundwater discharge (10.7%~27.7%) and evapotranspiration (1.5%~3.3%) decreased as the plastic film house area (5.7%~12.4%) increased.

The impact of anthropogenic factors on changes in discharge and quality of water in the Hadano basin, Japan (인위적인 요인이 하천의 유량과 수질변화에 미친 영향 - 일본 하다노 분지를 사례 로 -)

  • ;Yang, Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.242-254
    • /
    • 1995
  • The Hadano Basin is located at a distance of about 70kms and 60kms from Tokyo and Yokohama and lies in the south-west part of the Kanto region in Japan. The basin area, which correspoends to the catchment of the Kaname River, is about areal size of 60.7$\textrm{km}^2$ and extends about length of 8kms in E-W direction and about width of 5kms in N-S direction (Fig.1). The Hadano basin is filled with thick pile of the alluvum from deposits composed of volcanic materials, mostly came from the Hakone Volcano and overlain by Fuji Volcanic ashes. Fluvial deposits form the good aquifer, therefore water resources of Handano City has been largely depending upon the eroundwater. Urbanization and industrialization of the basin has been rapid in the last thirty years, after activation of "Factory Attraction Policy of Hadano City" in 1956. Growth in population and number of factory due to urbanization changed the land-use pattern of the basin rapidly and increased the water demands. Therefore, Hadano City exploited a new source of water supply, and have introduced the prefectureal waterworks since 1976. On the other hand, the rapid urbanization has brought about the pollution of streams in the basin by domestic sewage and industrial waste water. Diffusion rate of sewerage systems in Hadano City is 38% in 1993. In ordcr to examine the impact of anthropogenic factors on river environments, the author took up the change of land-use and diffusion area of sewerage as parameters, and performed field surveys on water discharge and quality. The survey has been made at upstream and downstream of the main stream regularly per month, to get informati ons about the variation of discharge and water quality aiong the stream and its diurnal fluctuation. Annual variation has been analyzed based the data from Hadano City Office. The results are summarized as follows. 1. Stream discharge has been increasing by urbanization (Fig.3). Water quality (C $l^{-10}$ , N $H^{+}$$_{ 4}$-N, BOD) has been improving gradually after the application of sewerage service, yet water pollution load at the lower station has increased than that at the upper one because of the larger anthropogenic discharge volumes (Fig.4). 2. Corrclation coefficient of discharges between upper and lower was 0.81-0.92. Pollutant loads of the R. Kamame after the confluence with R. Kuzuha grew up by 2.4-3.7 times as compared with its upper reaches, and it increased to 3.7-6.9 times after the confluence with the R. Muro (Fig.5). 3. The changes of water quality along the stream can be divided into two groups (Fig.6a). First: water quality of the R. Kaname and R. Shijuhachisse is becoming worse towards the lower reaches because the water from branches are polluted. Second: water quality are improved in the lower where spring and small branch streams supply clear water, for example R. Mizunashi, R. Muro and R. Kuzuha. 4. Measured discharge at the upper station in the R. Shijuhachisse is 0.153㎥/sec, and about 55% of this is recharged until it reaches to the lower point. The R. Mizunashi has a discharge of 1.155㎥/sec at the upper point, is recharged 0.24㎥/sec until the midstream and groundwater spring 0.2㎥/sec at the lower reaches. R. Kuzuha recharged all the mountain runoff (0.2㎥/sec) at the upper reaches. The R. Muro is supplied by many springs and the estimated discharge of spring was 0.47㎥/sec (Fig.6b). 5. Diurmal variations in discharge and water quality are influenced clearly by domestic and industrial waste waters (Fig.7, 8).ed clearly by domestic and industrial waste waters (Fig.7, 8).

  • PDF

Review of Policy Direction and Coupled Model Development between Groundwater Recharge Quantity and Climate Change (기후변화 연동 지하수 함양량 산정 모델 개발 및 정책방향 고찰)

  • Lee, Moung-Jin;Lee, Joung-Ho;Jeon, Seong-Woo;Houng, Hyun-Jung
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.157-184
    • /
    • 2010
  • Global climate change is destroying the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. The Intergovernmental Panel on Climate Change (IPCC 2007) makes "changes in rainfall pattern due to climate system changes and consequent shortage of available water resource" a high priority as the weakest part among the effects of human environment caused by future climate changes. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes, and "direct" interactions, being indirectly affected through recharge. Therefore, in order to quantify the effects of climate change on groundwater resources, it is necessary to not only predict the main variables of climate change but to also accurately predict the underground rainfall recharge quantity. In this paper, the authors selected a relevant climate change scenario, In this context, the authors selected A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by period and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model for groundwater recharge, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems associated with how the groundwater resource circulation system should be reflected in future policies pertaining to groundwater resources, it may be urgent to recalculate the groundwater recharge quantity and consequent quantity for using via prediction of climate change in Korea in the future and then reflection of the results. The space-time calculation of changes to the groundwater recharge quantity in the study area may serve as a foundation to present additional measures for the improved management of domestic groundwater resources.

  • PDF