• Title/Summary/Keyword: groundwater sources

Search Result 238, Processing Time 0.027 seconds

Technical Procedure for Identifying the Source of Nitrate in Water using Nitrogen and Oxygen Stable Isotope Ratios (질소 및 산소 안정동위원소 활용 수계 질산성 질소 오염원 판별을 위한 기술 절차 제안)

  • Kim, Kibeum;Chung, Jaeshik;Lee, Seunghak
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.87-98
    • /
    • 2022
  • This study aims to prepare a technical protocol for identifying the source of nitrate in water using nitrogen (δ15N) and oxygen (δ18O) stable isotope ratios. The technical processes for nitrate sources identification are composed of site investigation, sample collection and analysis, isotope analysis, source identification using isotope characteristics, and source apportionment for multiple potential sources with the Bayesian isotope mixing model. Characteristics of various nitrate potential sources are reviewed, and their typical ranges of δ15N and δ18O are comparatively analyzed and summarized. This study also summarizes the current knowledge on the dual-isotope approach and how to correlate the field-relevant information such as land use and hydrochemical data to the nitrate source identification.

Priority Management Using the QGIS for Sources of Contaminated Soil in Gyeonggi-do Province (QGIS를 이용한 경기도내 토양오염원의 중점관리 지점 선정)

  • Son, Yeong-Geum;Kim, Ji-Young;Park, Jin-Ho;Im, Heung-Bin;Kim, Jong-Su
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.88-95
    • /
    • 2020
  • Object: The purpose of this study was to select priority points for soil management using the location of groundwater and to suggest this method for soil contamination surveys. Method: Groundwater impact range was set to an area of 100 to 500 meters from the center point of agricultural groundwater wells. Data on industrial complex and factory areas, areas of stored or used ores and scrap metals, areas associated with waste and recycling, and traffic-related facilities areas were collected and checked for whether they fall within the groundwater impact range. Longitude and latitude coordinates of these data were mapped on the groundwater impact range using QGIS (Quantum Geographic Information System). Results: Considering the groundwater impact range, the points were selected as follows: 589 points were selected from 6,811 factories and 259 points were selected from 1,511 recycling business points. Traffic-related facility areas were divided between gas stations, bus depots, and auto mechanics. Thirty-four points were selected from 149 bus depots and 573 points were selected from 6,013 auto mechanic points. From the 2,409 gas station points, 323 were selected. Conclusion: Contaminated soil influences groundwater and crops, which can harm human health. However, soil pollution is not easily identified, so it is difficult to determine what has occurred. Pollution must be prevented beforehand and contaminated soil found. By selecting and investigating soil contamination survey points in consideration of the location of groundwater wells, we can safely manage water resources by preventing groundwater contamination in advance.

Characterization of Microbial Communities in a Groundwater Contaminated with Landfill Leachate using a Carbon Substrate Utilization Assay (탄소원 이용도 평가를 활용한 매립지 침출수로 오염된 지하수의 미생물 군집 특성 해석)

  • Koo, So-Yeon;Kim, Ji-Young;Kim, Jai-Soo;Go, Kyung-Seok;Lee, Sang-Don;Cho, Kyung-Suk;Go, Dong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.20-26
    • /
    • 2007
  • The microbial community properties of groundwater samples contaminated with landfill leachates were examined using Ecoplate including 31 sole carbon sources. The samples were KSG1-12 (leachate), KSG1-16 (treated leachate), KSG1-07 (contaminated groundwater), KSG1-08 (contaminated groundwater), and KSG1-13 (uncontaminated groundwater). Among the carbon sources used as substrates, 2-hydroxy benzoic acid, D,L-$\alpha$-glycerol phosphate, and D-malic acid were not utilized in any sample, while D-xylose, D-galacturonic acid, L-aspargine, tween 80, and L-serine were utilized in all 5 samples. The rest of substrates showed very different patterns among the samples. Average well color development (AWCD) analysis demonstrated that the potential activity on 31 substrates was in the order of KSG1-16 > KSG1-12 > KSG1-07 > KSG-08 > KSG1-13, which generally agrees with the degree of pollution, except KSG1-16. Principal component analysis (PCA) on similarity between samples showed two groups (KSG1-12, -07 and -08 vs KSG1-16 and -13), coinciding with contaminated and uncontaminated groups. Shannon index showed that the microbial diversities were similar among the samples.

Characteristics of Groundwater and Soil Contamination in Hallim Area of Jeju Island (제주도 한림지역의 지하수와 토양의 오염특성)

  • Hyun, Geun-Tag;Song, Sang-Tak;Joa, Dal-Hee;Ko, Yong-Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.44-51
    • /
    • 2010
  • Contamination of groundwater from point and non-point sources is one of major problems of water resource manangement in Jeju island. This study characterized groundwater and soil contamination in Hallim area which is one of the areas of significantly contaminated soil and groundwater in Jeju Island. The amount of loaded contaminant (ALC) of Jeju area was estimated as 13,212 ton N/yr and 3,210 ton P/yr, The ALC of Hallim area was amounted to 2,895 ton N/yr and 1,102 ton P/yr, which accounted for 21.9% and 34.3% of the Jeju's ALC, respectively. The soil pH values (5.6-5.9) were not much different in land use areas. By contrat, average cation exchange capacity (CEC) of 14.1 $cmol^+/kg$ was high comparing to the nationwide range of 7.7-10.9 $cmol^+/kg$. Further, Sodium adsorption ratios (SARs) of horse ranch, pasture, and cultivating land for livestock were as high as 0.19, 0.17, and 0.16 respectively, comparing to the other landuse areas. Nitrate nitrogen at 22.2% of total groundwater wells exceeded 10 mg/L (the criteria of nitrate nitrogen for drinking water), averaginged 6.62 mg/L with maximum 28.95 mg/L. Groundwater types belonged to Mg-$HCO_3$, Na-$HCO_3$, Ca-$HCO_3$, and Na-Cl, among which Mg-$HCO_3$ type occupied more than 70% of the total samples, indicating the presence of anthropogenic sources. The concentration of nitrate nitrogen was negatively related to altitude and well depth, and positively related to the concentration of Ca, Mg, and $SO_4$ which might originate from chemical fertilizer. The ratio of nitrogen isotopes was estimated as an average of 8.10$^{\circ}/_{\circ\circ}$, and the maximum value of 17.9$^{\circ}/_{\circ\circ}$. According to the nitrogen isotope ratio, the most important nitrogen source was assessed as chemical fertilizer (52.6%) followed by sewage (26.3%) and livestock manures (21.1%).

A Study on Designation and Management of Groundwater Conservation Area Using Groundwater Classification Map (지하수 분류도 작성에 의한 서울시 지하수 보전지구 선정\ulcorner관리 방안 연구)

  • 김윤종;이석민;원종석;이성복
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.97-112
    • /
    • 2001
  • The Section 12 of Groundwater Law stipulates that groundwater conservation zone should be regulated by the designation of conservation area and development restricted area, The most important policy for groundwater conservation and protection is to estimate and designate groundwater conservation zone. The groundwater classification map is utilized to determine the prime groundwater conservation areas, which delineate the first and the second ranked conservation areas of the map. According to the classification method of the Ministry of Construction and Transportation in 2000, groundwater quality for groundwater classification is classified with 4 levels based on the following conditions : (1) the present groundwater quality; (2) the potential usage as drinking water at present and in the future; (3) hydrogeological characteristics, and (4) the existence of pollution sources and activities. Throughout the initial analysis, the groundwater conservation areas are represented about 57.1$\textrm{km}^2$ in the groundwater classification map, which is 9.4% of Seoul Metropolitan Area. The management guidelines for groundwater conservation area are also developed referring to Cheju Province Groundwater Conservation Management Project and the guidelines by the Ministry of Construction and Transportation. But the specific administration and detailed technical survey should be prepared to efficiently manage the groundwater conservation area.

  • PDF

Utilization of nitrate stable isotopes of Chydorus sphaericus (OF Müller) to elucidate the hydrological characteristics of riverine wetlands in the Nakdong River, South Korea

  • CHOI, Jong-Yun;KIM, Seong-Ki;KIM, Jeong-Cheol;LA, Geung-Hwan
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.461-468
    • /
    • 2019
  • Background: This study aimed to identify NO3--N sources using the stable isotope δ15N in Chydorus sphaericus (OF Müller), to investigate hydrological characteristics and nutrient states in artificial wetlands near the Nakdong River. Chydorus sphaericus is dominant in wetlands where aquatic plants are abundant, occurring in high density, and is sensitive to wetland water pollution, making it suitable for identification of NO3--N sources. Results: NO3--N sources for each wetland were strongly dependent on hydrological characteristics. Wetlands with sewage or rainfall/groundwater as their main sources had high levels of NO3--N, whereas wetlands with surface water as their main input had comparatively lower levels. Since wetlands with sewage and rainfall/groundwater as their main water sources were mostly detention ponds, their inputs from tributaries or the main river stream were limited and nutrients such as NO3--N easily become concentrated. Changes in NO3--N levels at each wetland were closely associated with δ15N of C. sphaericus. Interestingly, regression analysis also showed positive correlation between δ15N of C. sphaericus and NO3--N level. Conclusions: We conclude that the nitrate stable isotope (δ15N) of C. sphaericus can be used to elucidate the hydrological characteristics of riverine wetlands. This information is important for maintenance and conservation of artificial wetlands at the Nakdong River.

Evaluation of Heavy Metal Sources and Its Transfer and Accumulation to Crop in Agricultural Soils (농경지 토양의 중금속 오염원 및 농작물로의 중금속 전이·축적 평가)

  • Lim, Ga-Hee;Jo, Hun-Je;Park, Gyoung-Hun;Yun, Sung-Mi;Kim, Ji-In;Noh, Hoe-Jung;Kim, Hyun-Koo;Yoon, Jeong-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.3
    • /
    • pp.27-42
    • /
    • 2018
  • It is important to identify the contaminant sources and to evaluate the fate and transport of heavy metals to crops in agricultural lands. This study was conducted to evaluate metal sources and its transfer and accumulation to crop in agricultural soils. Pollution indices were calculated and multivariate analysis was performed to identify metal sources. To evaluate transfer and accumulation of metals to crops, the contents of phytoavailable metals were evaluated by using single extraction method and the correlation between metal content and soil properties was analyzed. Also the BCF was quantitatively evaluated for investigating the metal transition to each crop grown in the research area. As a result, Cr, Ni, and Co were expected to be mainly derived from geologic factors due to weathering of certain parent rocks. The content of nickel in soils of the research area was slightly higher than that of the concern level criteria based on total concentration, but the amount transferred and accumulated in the crops was actually low. Understanding the contamination characteristics by investigating the pollution sources of heavy metals and its transfer and accumulation to crops through various evaluation techniques could provide important information for proper management of the agricultural land.

Evidences of in Situ Remediation from Long Term Monitoring Data at a TCE-contaminated Site, Wonju, Korea

  • Lee, Seong-Sun;Kim, Hun-Mi;Lee, Seung Hyun;Yang, Jae-Ha;Koh, Youn Eun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.8-17
    • /
    • 2013
  • The contamination of chlorinated ethenes at an industrial complex, Wonju, Korea, was examined based on sixteen rounds of groundwater quality data collected from 2009 to 2013. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pumping-and-treatment have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. At each remediation target zone, temporal monitoring data before and after the application of remediation techniques showed that the aqueous concentrations of TCE plume present at and around the main source areas decreased significantly as a result of remediation technologies. However, the TCE concentration of the plumes at the downstream area remained unchanged in response to the remediation action, but it showed a great fluctuation according to seasonal recharge variation during the monitoring period. Therefore, variations in the contaminant flux across three transects were analyzed. Prior to the remediation action, the concentration and mass discharges of TCE at the transects were affected by seasonal recharge variation and residual DNAPLs sources. After the remediation, the effect of remediation took place clearly at the transects. By tracing a time-series of plume evolution, a greater variation in the TCE concentrations was detected at the plumes near the source zones compared to the relatively stable plumes in the downstream. The difference in the temporal profiles of TCE concentrations between the plumes in the source zone and those in the downstream could have resulted from remedial actions taken at the source zones. This study demonstrates that long term monitoring data are useful in assessing the effectiveness of remediation practices.

Fate and Transport of Viruses in Soil and Groundwater Environments (토양.지하수 환경에서 바이러스의 거동)

  • Park, Jeong-Ahn;Yoon, Seo-Young;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.504-515
    • /
    • 2012
  • Groundwater is widely used as drinking water supplies around the world. However, microbial contamination of groundwater is a serious environmental problem that degrades drinking water quality and poses a great threat to human health. Among the pathogenic microorganisms such as viruses, bacteria, and protozoa, viruses are not readily removed during transport through soils, having high mobility in groundwater environment due to their smaller size compared to bacteria and protozoa. Studies regarding the fate and transport of viruses in soils and aquifers are necessary to determine the vulnerability of groundwater to microbial contamination and to secure safe drinking water sources. Also, these studies provide important information to establish the regulations and policies related to public health. This review paper presented the field and laboratory studies conducted for the fate and transport of viruses in subsurface environments. Also, the paper provided the factors affecting the fate and transport of viruses, the characteristics of bacteriophages used for virus studies, and virus transport model/colloid filtration theory. Based on this review work, future researches should be performed actively to set up the viral protection zone for the protection of groundwater from viral contamination sources. Especially, the researches should be focused on the development of mathematical models to calculate the setback distance and travel time for the viral protection zone along with the accumulation of information related to the model parameters.

Hydrogeochemical Evaluation of Crystalline bedrock Grondwater in a Coastal Area using Principal Component Analysis (주성분 분석을 이용한 해안지역 결정질 기반암 지하수의 수리지구화학적 평가)

  • Lee, Jeong-Hwan;Yoon, Jeong Hyoun;Cheong, Jae-Yeol;Jung, Haeryong;Kim, Soo-Gin
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.10-17
    • /
    • 2017
  • In this study, the evolution and origin of major dissolved constituents of crystalline bedrock groundwater in a coastal area were evaluated using multivariate statistical and groundwater quality analyses. The groundwater types mostly belonged to the $Na(Ca)-HCO_3$ and $Ca-HCO_3$ types, indicating the effect of cation exchange. Stable isotopes of water showed two areas divided by first and secondary evaporative effects, indicating a pattern of rapid hydrological cycling. Saturation indices of minerals showed undersaturation states. Thus, the degree of evolution of groundwater is suggested as in the low to intermediate stage, based on field and laboratory analytical conditions. According to the principal component analysis (PCA) results, the chemical components of EC, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $HCO_3{^-}$, $SO{_4}^{2-}$ (PCA 1), $F^-$ (PCA 3), $SiO_2$ (PCA 4), and $Fe^{2+}$ (PCA 5) are derived from various water-rock interactions. However, $NO_3{^-}$, $Na^+$, and $Cl^-$ (PCA 2) represented the chemical characteristics of both anthropogenic sources and natural sea spray.