• Title/Summary/Keyword: groundwater sources

Search Result 238, Processing Time 0.026 seconds

Optimal Design Study for Development of Washable Faucet Assembly Housing Including Filtration Filter (여과필터를 포함한 세척이 가능한 수도꼭지 어셈블리 하우징 개발을 위한 최적설계 연구)

  • Son, In-Soo;Bae, Sang-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.581-587
    • /
    • 2021
  • In recent years, contamination of drinking water sources has emerged as a serious social problem, such as a large number of impurities in tap water or groundwater or the supply of suitable water due to rust of pipes. Although the government and public institutions are implementing various measures to protect water sources, they cannot improve water quality in a short period of time because of the enormous cost involved. Therefore, in recent years, preference has been given to a device that converts tap water, which is hard water, into soft water by installing a separate water softener at the faucet from which tap water is discharged. However, the existing filtration device has a problem that filtration performance is gradually lowered when impurities accumulate in the filter, requiring continuous filter replacement. In this study, the optimal design of the filter housing was performed to develop a water softener that can be washed when impurities accumulate on the filter inside the water softener connected to the faucet. For optimal design of the filter housing, fluid and fluid-structural interaction analysis were performed on the design pressure to determine the shape and thickness of the housing, and design review was performed through prototype.

Characterization of the Behavior of Naturally Occurring Radioactive Elements in the Groundwater within the Chiaksan Gneiss Complex : Focusing on the Mineralogical Interpretation of Artificial Weathering Experiments (치악산 편마암 지질의 지하수 내 자연 방사성 원소의 거동 특성 연구: 인공풍화 실험을 통한 광물학적 해석)

  • Woo-Chun Lee;Sang-Woo Lee;Hyeong-Gyu Kim;Do-Hwan Jeong;Moon-Su Kim;Hyun-Koo Kim;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • The study area was Gangnim-myeon, Hoengseong-gun, Gangwon-do, composed of the Chiaksan gneiss complex, and it was revealed that the concentrations of uranium (U) and thorium (Th) within the groundwater of the study area exceeded their water quality standards. Hence, artificial weathering experiments were conducted to elucidate mineralogically the mechanisms of their leaching using drilling cores obtained from the corresponding groundwater aquifers. First of all, the mineralogical compositions of core samples were observed, and the results indicated that the content of clinochlore, a member of the chlorite group of minerals that can form through low- and intermediate-temperature metamorphisms, was relatively higher. In addition, the Th concentration was measured ten times higher than that of U. The results of artificial weathering experiments suggested that the Th concentrations gradually increased through the dissolution of radioactive-element-bearing minerals up to the first day, and then they tended to decrease. It could be attributed to the fact that Th was leached with the dissolution of thorite, which might be a secondary mineral, and then dissolved Th was re-precipitated as the various forms of salt, such as sulfate. Even though the U content was lower than that of Th in the core samples, the U concentration was one hundred times higher than that of Th after the weathering experiments. It is likely caused by the gradual dissolution and desorption of U included in intensively weathered thorite or adsorbed as a form of UO22+ on the mineral surface. In addition, the leaching tendency of U and Th was positively correlated with the bicarbonate concentration. However, the concentrations between U and Th in groundwater exhibited a relatively lower correlation, which might result from the fact that they occurred from different sources, as aforementioned. Among various kinetic models, the parabolic diffusion and pseudo-second-order kinetic models were confirmed to best fit the dissolution kinetics of both elements. The period that would be taken for the U concentration to exceed its drinking-water standard was inferred using the regressed parameters of the best-fitted models, and the duration of 29.4 years was predicted in the neutral-pH aquifers with relatively higher concentrations of HCO3, indicating that U could be relatively quickly leached out into groundwater.

Estimation of Nitrate-nitrogen Contamination Sources in Cheju Island Groundwater using $\delta$$^{15}$ N Values ($\delta$$^{15}$ N값을 이용한 제주도 지하수중의 질산성질소 오염원추정에 관한 연구)

  • 오윤근;현익현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 1997
  • This study was carried out to find out the source of nitrate-nitrogen (NO$_3$-N) contamination in the groundwater in Cheju Island. Among the sites which have exceeded or may exceed the criterion level (10 mg/L) of NO$_3$-N in drinking water, seven sampling sites including two reference sites were chosen. The former regions are mainly agricultural ones (A-1 to A-6) and residential (R). The latter regions are forest (F-1 and F-2). The predicted major source and its contribution to NO$_3$-N concentration at each site, using $\delta$$\^$15/N and NO$_3$-N concentration, were as follow; Those at A-1, R and F-1 was 61.1%, 50.0% and 20.0% to manure or domestic sewage, 27.8%, 45.7% and 40.0% to chemical fertilizers and 11.1%, 4.3% and 40.0% to natural soil, respectively. Those at A-2 to A-6 were 37.8%, 25.0%, 40.9%, 26.2% and 35.7% to manure or domestic sewage, 59.6%, 71.7%, 53.0%, 71.5% and 60.2% to chemical fertilizers and 2.6%, 3.3%, 6.1%, 2.3% and 4.1% to natural soil, respectively.

  • PDF

Environmental Geochemistry of Radon at the Taejon City Area in Korea (대전시(大田市) 지역(地域) 라돈 환경(環境) 지화학(地化學) 연구(硏究))

  • Hong, Young-Kook
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.51-60
    • /
    • 1997
  • The high radon (Rn222) potentials of soil, groundwater, hotspring and indoor environments in the Taejon city area were delineated by use of an EDA RDA-200 radon detector. The U and Th contents were also analysed using a Multi Channel Analyzer to illustrate the sources of the radon potentials. The average U concentrations in Taejon vary according to the type of granites such as $4.14{\pm}2.36ppm$ in schistose granite (SG), $3.13{\pm}1.70ppm$ in biotite granite (BG) and $3.01{\pm}1.95ppm$ in two mica granite (TG). The U contents in the granites are closely related with the amounts of uraniferous minerals. However, the U contents in the soil are found to be $5.05{\pm}4.75ppm$ in TG, $4.07{\pm}1.69ppm$ in BG and $3.87{\pm}1.91ppm$ in SG which are mainly explained by the different cation exchange capacities (CEC) of the soils from various granites. The levels of soil radon are $552{\pm}656pCi/l$ in SG, in which levels at two locations exceed the level of 1,350 pCi/l established as guideline for follow-up action by the U.S. Environmental Protection Agency (EPA), $443{\pm}284pCi/l$ in TG and $224{\pm}115pCi/l$ in the BG. The soil radon concentrations are found to be proportional to the U content and hardness of the soils. The groundwater radon concentrations in the domestic wells of - 30~-100 m depth show that $6,907{\pm}4,665pCi/l$ in TG, $5,503{\pm}6,551pCi/l$ in SG and $2,104{\pm}1,157pCi/l$ in BG which are positively related with U contents in soils. The radon levels of six groundwater wells in TG and two in SG are greater than guideline for drinking water level, 10,000 pCi/l by EPA (1986). Average radon contents of hotsprings and public bathes in the TG area are $7,071{\pm}1,942pCi/l$ and $1,638{\pm}709pCi/l$, respectively, which are below the EPA standard for remedial action value of the 10,000 pCi/l. The mean indoor radon concentrations of the TG and SG areas are $1.60{\pm}1.20pCi/l$ and $1.60{\pm}0.70pCi/l$, respectively. The elevated indoor radon levels of 5.6 pCi/l and 6.7 pCi/l are found to be particularly in TG area, which exceeds 4 pCi/i guideline, correlating positively with the U contents in the soil and radon concentration in the groundwater.

  • PDF

Determination of Hydraulic Parameters in Unconfined Sandy Aquifer in a Laboratory Scale (실내 자유면 사질 대수층의 수리상수 결정)

  • 김정석;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.152-157
    • /
    • 1999
  • Oil leaked from underwound storage tanks and leachate from sanitary landfills have been known as contaminant sources of the high-quality groundwater resources. The mobility of contaminants in the aquifer largely depends on the groundwater flow and the determination of associated hydraulic parameters is essential for a proper remediation of contaminated grnundwater. This study aimed at determining an optimum set of hydraulic parameters for an unconfined sandy aquifer of a laboratory scale through comparison of various methods. Results showed that the specific yield obtained from gravity drainage experiment was an average of 0.20 with minor variations in aquifer depths. and the permeabilities obtained from Dupuit approximation and slug test gave similar values of 5.33 cm/min and 5.85 cm/min but the constant head method gave 0.17 cm/min, which is much ion than the other methods. This experimental evidence reveals that the permeability of the unconfined sandy aquifer could be accurately determined by Dupuit assumption or slug tut rather than by constant head method conducted for a disturbed separate soil column.

  • PDF

Groundwater Quality Characteristics of Pollution Concerned Area in Gyeongnam Using Groundwater Quality Monitoring Data (지하수수질측정망 자료를 활용한 경남 오염우려지역의 지하수 수질 특성)

  • Cha, Suyeon;Seo, Yang Gon
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.174-181
    • /
    • 2021
  • This study analyzed the groundwater quality characteristics according to the main source of pollution and quarter (season) by using data from the pollution exclusive monitoring network in the Gyeongsangnam-do area for five years (2013-2017). The main source of pollution was the industrial complex areas, waste mines, and sewage treatment facilities. The analysis items were field measurement items (water temperature, pH, electrical conductivity, dissolved oxygen, oxide reduction potential), positive ions, and negative ions. Water temperature and pH did not vary significantly according to the main source of pollution. In industrial complex areas, the value of electrical conductivity was the highest, and dissolved oxygen value was the lowest. The mean concentration of positive and negative ions was the largest in industrial complex areas, followed by sewage treatment facilities and waste mines. It was shown that the concentration of sodium ion was the highest in industrial complex areas and calcium ion in waste mines and sewage treatment facilities. The concentration of bicarbonate ion was the highest in all main sources of pollution. Water temperature, pH, and concentrations of cations and anions did not vary significantly from quarter to quarter. Of the water quality types, the Na-HCO3 type accounted for the highest proportion, but the Na-Cl type, which has a high possibility of external contamination, accounted for about 20% of the total data in the pollution exclusive monitoring network.

Application of Geostatistical Methods for the Analysis of Groundwater Contamination in Pusan (부산지역 지하수 오염현황 분석을 위한 지구통계 기법의 응용)

  • 정상용;강동환;박희영;심병완
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.247-261
    • /
    • 2000
  • The geostatistical analyses for the chemical components of pH, TS, KMnO4 Demand, Cl, SO$_4$ and NO$_3$-N are carried out to understand the groundwater contamination in Pusan. The average values of each component are 7.2 for pH, 336.4mg/$\ell$ for TS, 2.3mg/$\ell$ for KMnO$_4$ Demand, 44.3mg/$\ell$ for Cl, 36.0mg/$\ell$ for SO$_4$, and 4.6mg/$\ell$ for NO$_3$-N. The ratios over the drinking standard of each component are 0.34% for pH, 2.27% for TS, 1.55% for KMnO$_4$ Demand, 1.59% for Cl, 0.57% for SO$_4$, and 3.7% for NO$_3$-N. The highest ratio of NO$_3$-N results from the municipal sewage and exhaust gas of vehicles. The isopleth maps of 6 chemical components show that the high values of groundwater contamination come from the inland of Pusan, and that some high values appear at the coastal area. The isopleth maps of Cl and SO$_4$ related with seawater intrusion also show that the high values appear only at the particular coastal area, not at the whole area. On the isopleth maps of Cl and SO$_4$, the anomalies of the concentration contours were compared with the directions of two large fault zones, the Ilkwang Fault and the Dongrae Fault. Apparently, they don't have the particular correlation. Therefore, it is concluded that the main source of groundwater contamination in Pusan is not the seawater, but the municipal sewage and other sources such as the exhaust gas of vehicles, the contaminated surface water, the waste water of factories, and the leachate of waste landfills.

  • PDF

A Study on Remediation of Chlorinated Hydrocarbons and Explosives using Pulsed-UV System (Pulsed-UV 시스템을 이용한 염소계 유기화합물 및 화약류 제거에 관한 연구)

  • Lee, Han-Uk;Han, Jonghun;Yoon, Yeomin;Lee, Jongyeol;Her, Namguk
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.78-84
    • /
    • 2013
  • This study was conducted in order to evaluate the removal process for long-term contamination sources including chlorinated hydrocarbons (TCE and PCE) and explosive compounds (TNT, RDX, and HMX) in underground water using a pulsed-UV system. Crystallized cells containing the contaminants were placed 10, 20, and 40 cm away from a lamp that emits pulsed-UV rays in order to examine how the removal efficiency is influenced by the distance between the source of the light and the compounds. Chlorinated hydrocarbons were completely removed in 30 minutes with a distance of 10 cm, while PCE was completely removed even with a distance of 20 cm. In the case of explosive compounds, removal efficiencies slightly varied depending on the compounds. The majority of the compounds were perfectly removed with a contact time of 10 minutes. In particular, for RDX, the results showed that complete removal was obtained within one minute, regardless of the distance from the UV source. The amount of light energy is in inverse proportion to the distance, and thus the energy reaching the compounds severely diminishes as the distance increases. Therefore, the removal efficiency decreased with increasing distance in the system.

Assessment of Dredged Soils and Sediments Properties in the Lower Reach of Nakdong River and Coastal Areas of Busan for Beneficial Uses (낙동강 하류 및 부산연안지역의 준설토와 퇴적토 활용을 위한 특성 평가)

  • Yi, Yongmin;Kim, Gukjin;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.57-66
    • /
    • 2013
  • Although the quantity of dredged soils has increased owing to recent new harbor construction, sea course management, polluted sediment dredging, and four-river project, the reuse or recycling of those dredged soils has not done properly in Korea. To develop measures to utilize them in various ways for reuse or recycling, the biophysicochemical properties of dredged soils and sediment were assessed in this study. Samples were classified according to their sources-river and sea-by location, and as dredged soil and sediment depending on storage time. The results showed that dredged materials from the sea have high clay content and can be used for making bricks, tiles, and lightweight backfill materials, while dredged materials from the river have high sand content and can be used in sand aggregates. Separation procedures, depending on the intended application, should be carried out because all dredged materials are poorly sorted. All dredged soils and sediments have high salinity, and hence, salts should be removed before use for cultivation. Since dredged materials from the sea have adequate concentrations of nutrients, except phosphate, they can be used for creating and restoring coastal habitats without carrying out any additional removal processes. The high overall microbial activities in dredged materials from the river suggested that active degradation of organic matter, circulation of nutrients, and provision of nutrients may occur if these dredged materials are used for cultivation purpose.

The Evaluation of Groundwater Pumping Capacity at a Catchment Area with Interrelated Wells in Volcanic Island: II. With Consideration of Water Quality (상관우물들이 분포하는 화산섬 집수역에 대한 지하수 양수능의 평가 II. 수질(水質)을 고려한 경우)

  • Lee, Sunhoon;Machida, Isao;Imoto, Yukari
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.3
    • /
    • pp.199-209
    • /
    • 2003
  • The withdrawal method for protecting the uncontaminated part from the spread of contaminants was suggested by a simultaneous equation. The formulation of them is based upon the build up of the ridge part between the contaminated and uncontaminated parts that resulted from the efficient use of barrier wells. The quality in the withdrawn groundwater depends upon the heads at wells no. 5 and 6. The determination of pumping rates and qualities with changing the heads at wells no. 5 and 6 should be given by considering the demand for water use and the capacity and cost for removing the contained contaminants. The results of this study should be used in taking a plan for supplying water use as well as preventing the spread of contaminants from some known contaminated sources.