• Title/Summary/Keyword: groundwater arsenic

Search Result 186, Processing Time 0.024 seconds

비소종(Arsenite, Arsenate, DMA)에 따른 토양독성 비교분석

  • Lee U-Mi;Lee Ju-Yeong;Im Seung-Yun;Jeong Hye-Won;An Yun-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.175-177
    • /
    • 2005
  • Effect of arsenite, arsenate and dimethylarsinic acid (DMA) on the growth of seedling plants were investigated in order to compare the toxicity of arsenic species in soil environments. Test plants were mung bean (Phaseolus radiatus), wheat (Triticum aestivum), barely (Hordeum vulgare), cucumber (Cucumis sativus L.). Seedling growth in As-contaminated soil were significantly reduced in all test species. Arsenite was more toxic than arsenate and DMA. Among the test plants, mung bean was most sensitive to arsenic, followed by cucumber, wheat, and barely.

  • PDF

Sequential Washing Techniques for Arsenic-Contaminated Soils near the Abandoned Iron-Mine (폐 철광산 주변 비소로 오염된 토양에 대한 연속 세척기법의 적용)

  • Hwang Jung-Sung;Choi Sang-il;Han Sang-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Several tests were conducted to determine the optimum operational conditions of soil washing techniques for floe-forming arsenic-contaminated soils, collected from D abandoned Iron-mine in Korea. The optimum cut-off size was 0.15 mm $(sieve\;\#100)$, about $94\%$ of the mass of soils. Both sodium hydroxide and hydrochloric acid were effective to remove arsenic and the optimum mixing ratio (soil [g] : washing solution [mL]) was 1:5 for both washing agents. Arsenic concentrations, determined by KST Methods, for the dried floe solids obtained from flocculation at pH 5-6 were $990\~1,086\;mg/kg$ dry solids, which were higher concentrations than at the other pH values. Therefore, batch tests for sequential washings with or without removing floc were conducted to find the enhancement of washing efficiencies. After removing floe with 0.2 M HCl, sequential washings of 1 M HCl followed by 1 M NaOH showed the best results (15 mg/kg dry soil). The arsenic concentrations of washing effluent from each washing step were about $2\~3\;mg/L$. However, when these acidic and basic effluents were mixed together, arsenic concentration was decreased to be less than $50\;{\mu}g/L$, due to the pH condition of coagulation followed by precipitation for arsenic removal.

Effects of pH-Eh on Natural Attenuation of Soil Contaminated by Arsenic in the Dalchen Mine Area, Ulsan, Korea (비소로 오염된 달천광산 토양의 자연저감 능력에 대한 pH-Eh영향)

  • Park Maeng-Eon;Sung Kyu-Youl;Lee Minhee;Lee Pyeong-Koo;Kim Min-Chul
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.513-523
    • /
    • 2005
  • The contamination of soils and groundwaters in the Dalcheon mine area, Ulsan, is investigated, and a natural attenuation capacity on redox and pH is evaluated. Arsenopyrite, the major source of arsenic pollution in the Dalcheon mine area, is contained up to $2\%$ in tailings. Furthermore, As-bearing minerals such as loellingite, nicolite, rammelsbergite, gersdorffite cobaltite and pyrite are also source of arsenic contamination, which show various concentration of arsenic each other. Surface of pyrite and arsenopyrite in tailings partly oxidized into Fe-arsenates and Fe-oxides, which means a progressive weathering process. There is no relationship between pH and arsenic content in groundwaters, otherwise Eh and arsenic concentration in unsaturated and saturated groundwater shows positive relationship. RMB (Red Mud Bauxite) could be useful as a trigger on natural attenuation due to superior ability of removal capacity of arsenic when contaminated soil and groundwater in the Dalcheon mine area are remediated.

Removal of Arsenic From Closed Mine Tailings by Alkali-Leaching Method (알칼리 용출법에 의한 폐광산 광미중의 비소제거에 관한 연구)

  • 이재령;오종기;이화영;김성규;박재구
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.73-79
    • /
    • 1997
  • Removal of the Arsenic components from the closed mine tailings has been attempted by the alkali-leaching method. Two tailings collected from the Daduck and Yuchon mine which were already closed many years ago were leached with caustic soda solutions. The Arsenic components in the leach liquor resulted from the alkali treatment of tailings could be removed fairly well in the form of insoluble calcium-Arsenic compound by the precipitation with calcium chloride. As a result, the extraction of about 60~90% Arsenic from the tailings could be obtained depending on the leaching conditions and the influence of temperature and the slurry density on the extraction of Arsenic was also found to be very small at the NaOH concentration more than 0.5N. In addition, it seemed that a caustic soda solution over 0.5N NaOH could be used repeatedly for the leaching of tailings since the consumption of NaOH was not so great in a leaching of them. As far as the precipitation of Arsenic components was concerned, more than 99% of Arsenic could be precipitated within 10 minutes by the addition of 2wt% CaC12 in to the leach liquor.

  • PDF

Characteristics of Natural Arsenic Contamination in Groundwater and Its Occurrences (자연적 지하수 비소오염의 국내외 산출특성)

  • Ahn Joo Sung;Ko Kyung-Seok;Lee Jin-Soo;Kim Ju-Yong
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.547-561
    • /
    • 2005
  • General characteristics of groundwater contamination by As were reviewed with several recent researches, and its occurrence in groundwater of Korea was investigated based on a ffw previous studies and a groundwater quality survey in Nonsan and Geumsan areas. In Bangladesh, which has been known as the most serious arsenic calamity country, about $28\%$ of the shallow groundwaters exceeded the Bangladesh drinking water standard, $50{\mu}g/L$, and it was estimated that about 28 million people were exposed to concentrations greater than the standard. Groundwater was characterized by circum-neutral pH with a moderate to strong reducing conditions. Low concentrations of $SO_4^{2-}$ and $NO_3^-$, and high contents of dissolved organic carbon (DOC) and $NH_4^+$ were typical chemical characteristics. Total As concentrations were enriched in the Holocene alluvial aquifers with a dominance of As(III) species. It was generally agreed that reductive dissolution of Fe oxyhydroxides was the main mechanism for the release of As into groundwater coupling with the presence of organic matters and microbial activities as principal factors. A new model has also been suggested to explain how arsenic can naturally contaminate groundwaters far from the ultimate source with transport of As by active tectonic uplift and glaciatiion during Pleistocene, chemical weathering and deposition, and microbial reaction processes. In Korea, it has not been reported to be so serious As contamination, and from the national groundwater quality monitoring survey, only about $1\%$ of grounwaters have concentrations higher than $10{\mu}g/:L.$ However, it was revealed that $19.3\%$ of mineral waters, and $7\%$ of tube-well waters from Nonsan and Geumsan areas contained As concentrations above $10{\mu}g/:L.$. Also, percentages exceeding this value during detailed groundwater quality surveys were $36\%\;and\;22\%$ from Jeonnam and Ulsan areas, respectively, indicating As enrichment possibly by geological factors and local mineralization. Further systematic researches need to proceed in areas potential to As contamination such as mineralized, metasedimentary rock-based, alluvial, and acid sulfate soil areas. Prior to that, it is required to understand various geochemical and microbial processes, and groundwater flow characteristics affecting the behavior of As.

Arsenic Concentrations of Groundwater and Rice Grains in Bangladesh and Phytoremediation (방글라데시의 지하수와 쌀의 비소오염 및 식물정화법)

  • Islam, Jahidul Mohammad;Kim, Bomchul;Laiju, Nahida;Nasirullah, Tarek;Miah, Mohammad Nuruddin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.116-124
    • /
    • 2010
  • While groundwater is the major source for drinking and irrigation purposes, arsenic (As) contamination of groundwater is a serious issue in Bangladesh. With a view to reduce As contamination in drinking water the guideline value recommended for Bangladesh is 0.05 mg/L. We assessed groundwater As in an As-affected Sadar Upazilla (small administrative unit) in the District (administrative unit) of Chapai Nabwabganj during 2006, where 50% hand tube well water were above the recommended limit (0.05 mg/L) during dry season. Almost 20% tube well waters were above the recommended limit during rainy season, perhaps due to the dilution of water table. The groundwater in Bangladesh contaminates surface soils and plants thereby As entering the food chain. In 2005, we examined the As levels in different rice varieties grown in different Districts of Bangladesh and the As concentrations in rice grain ranged from 0.07~1.12 mg/kg while the concentrations in 3 rice varieties were above the recommended limit (1 mg/kg rice grain) and the maximum concentration was 1.12 mg/kg rice grain in the rice variety BR 11. With few exceptions, the As content of rice grain in Bangladesh is not considered to be concentration of greater health concern as yet. We also observed enhanced root uptake, efficient root-to shoot translocation, and a much elevated tolerance through internal detoxification all contribute to As hyperaccumulation in a plant, ladder brake fern (Pteris vittata L.). But the phytoremediation technique might not be an appropriate tool to reduce the As calamity in the vast areas of Bangladesh. To mitigate the As problem of Bangladesh, better coordination among governmental agencies and many other organizations will be required to combat the disaster.

Removal of As, Cadmium and Lead in Sandy Soil with Sonification-Electrokinetic Remediation (초음파동전기기법을 이용한 비소, 카드뮴, 납으로 오염된 사질토 정화 연구)

  • Oh, SeungJin;Oh, Minah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.1-11
    • /
    • 2013
  • The actively soil pollution by the toxic heavy-metals like the arsenic, cadmium, lead due to the industrialization and economic activity. The uses the electrokinetic remediation of contaminated soil has many researches against the fine soil having a small size in the on going. However, it is the actual condition which the research result that is not effective due to the low surface charge of the particle and high permeability shows in the electrokinetic remediation in comparison with the fine soil in the case of the sandy soil in which the particle size is large. In this research, the electrokinetic remediation and ultrasonic wave fetch strategy is compound applied against the sandy soil polluted by the arsenic, cadmium, and lead removal efficiency of the sandy soil through the comparison with the existing electrokinetic remediation tries to be evaluated. First of all, desorption of contaminants in soil by ultrasonic extraction in the Pre-Test conducted to see desorption effective 5~15%. After that, By conducted Batch-Test results frequency output century 200 Khz, reaction time 30 min, contaminated soil used in experiment was 500 g. Removal efficiency of arsenic, cadmium, lead are 25.55%, 8.01%, 34.90%. But, As, Cd, Pb remediation efficiency less than 1% in EK1(control group).

Speculation on the Water Quality for the Natural Mineral Water (국내 먹는샘물의 특정 수질 항목에 대한 고찰)

  • 조병욱;이병대;이인호;추창오
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.395-404
    • /
    • 2002
  • Contents of the specific components in the natural mineral water was discussed in relation to the well depth and geology. According to water quality data during the last five years(1998~2002), the nitrate and fluoride concentrations, and pH averaged 0.89~ 1.09 mg/L, 0.37~0.45 mg/L, and 7.30~7.59, respectively. These values are the similar range to those of generalized groundwater having same well depths, implying that shallow groundwaters flow into the production wells. In general, no clear relationships between the water quality, well depth, and geology were found. The average arsenic concentration of the natural mineral water increased from 0.0024 mg/L in 1999 to 0.0066 mg/L in 2002. The percentage of production well with arsenic level higher than 0.001 mg/L also increased from 20.1% in 1999 to 64.9% in 2002. In 2002, 11 out of 57 production wells exceed 0.001 mg/L which will be announced as a new arsenic standard for drinking water by USEPA.