• Title/Summary/Keyword: groundwater arsenic

Search Result 186, Processing Time 0.023 seconds

Assessment of the Adsorption Capacity of Cadmium and Arsenic onto Paper Mill Sludge Using Batch Experiment (회분식 실험을 통한 제지슬러지의 카드뮴 및 비소 흡착능 평가)

  • Baek, Jongchan;Yeo, Seulki;Park, Junboum;Back, Jonghwan;Song, Youngwoo;Igarashi, T.;Tabelin, C.B.
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.46-53
    • /
    • 2014
  • The purpose of this study is to promote utilization of paper mill sludge as an adsorbent for stabilizing heavy metals in contaminated water by measuring the adsorption capacity of paper mill sludge for cadmium and arsenic. To measure adsorption capacity of paper mill sludge, sorption isotherm experiments were analyzed by Langmuir and Freundlich isotherm models. Also, two methods of chemical modifications were applied to improve the adsorption capacities of paper-mill-sludge: the first method used sodium hydroxide (NaOH), called PMS-1, and the second method used the NaOH and tartaric acid ($C_4H_6O_6$) together, called PMS-2. For Cd adsorption, PMS-1 presented the increase of reactivity while PMS-2 presented the decline of reactivity compared to that of untreated paper-mill-sludge. In case of As adsorption, both PMS-1 and PMS-2 showed the decrease of adsorption capacities. This is because zeta-potential of paper mill sludge was changed to more negative values during chemical modification process due to the hydroxyl group in NaOH and the carboxyl group in $C_4H_6O_6$, respectively. Therefore, we may conclude that the chemical treatment process increases adsorption capacity of paper mill sludge for cation heavy metals such as Cd but not for As.

Optimization of As Bioleaching by Herbaspirillum sp. GW103 Coupled with Coconut Oil Cake

  • Govarthanan, Muthusamy;Praburaman, Loganathan;Kim, Jin-Won;Oh, Sae-Gang;Kamala-Kannan, Seralathan;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2015
  • The objective of this study was to optimize the experimental conditions for bioleaching of arsenic (As) using Herbaspirillum sp. GW103 and to understand the interaction between bacteria and As during bioleaching. Five variables, temperature, time, CaCO3, coconut oil cake, and shaking rate, were optimized using response surface methodology (RSM) based Box-Behnken design (BBD). Maximum (73.2%) bioleaching of As was observed at 30℃, 60 h incubation, 1.75% CaCO3, 3% coconut oil cake, and 140 rpm. Sequential extraction of bioleached soil revealed that the isolate Herbaspirillum sp. GW103 significantly reduced 28.6% of water soluble fraction and increased 38.8% of the carbonate fraction. The results of the study indicate that the diazotrophic bacteria Herbaspirillum sp. could be used for bioleaching As from mine soil.

Transfer of Arsenic and Heavy Metals from Soils to Rice Plant under Different Drainage Conditions (논토양 배수조건에 따른 비소 및 중금속의 용출 및 벼 전이특성)

  • Koh, Il-Ha;Kim, Jungeun;Kim, Gi Suk;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.12-21
    • /
    • 2017
  • A pot experiment was conducted to investigate the transfer of As and cationic heavy metals (Fe, Mn, Zn, Cd and Pb) from soil to rice plant in soil condition with submerged and drained. During the ninety-day monitoring period for soil solution, solubility of reducible elements such as As, Fe and Mn in submerged condition were higher than that of Zn. On the contrary, concentration of Zn in drained condition was higher than that of reducible elements. The concentration of As, Cd, Pb and Zn in rice plant (root, stem, leaf and grain) showed similar pattern with soil solution. The As concentration in each part of rice plant, which cultivated in drained condition, measured 56%~94% lower than those in submerged condition. However, the contents of cationic heavy metals (Cd, Pb and Zn) were represented the opposite result with As. These results are due to mobility of As and cationic heavy metals under different soil drainage conditions which represent oxidation and reduction. Thus soil drainage control can be used as acceptable passive treatment methods to reduce transfer of inorganic contaminants from soil to rice plant. However more detailed examination on soil condition conversion is needed, because yield of rice was decreased when it cultivated in drained condition only. It also needed when soil is contaminated by As and cationic heavy metal because single drainage condition cannot reduce transfer of both kinds of contaminants all.

Evaluation of Stabilization of Arsenic in Contaminated Soil Taken from Farmland Near Abandoned Metal Mine (폐금속광산 주변 오염 농경지에서 비소의 안정화 효율 평가)

  • Han, Su Ho;Jung, Myung Chae;Kim, Jeong Wook;Yoon, Kyung Wook;Min, Seon Ki;Park, So Yeon;Sim, Ki Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2021
  • This study has evaluated the stabilization of As contaminated paddy and cultivated soils by pot experiments for rice and lettuce. Various ratios of limestone (L) and steel slag (S) were mixed with the soils in each pot. The soils were taken from before and after pot experiments, and analyzed for As extracted by sequentially (Wenzel method) and totally (aqua regia method).. Paddy soils amended with L (0.5%) and L (1.0%) + S (1.0%) showed increasing fraction 2 (specifically bound As) compared with control soil. Arsenic concentrations in rice grain grown on the amended soils decreased 14% and 12% compared with those on the control soil, respectively. According to sequential extraction of As in cultivated soils, the fractions 1~3 were decreased due to stabilization of As by the soil amendment, especially for S (1.0%), S (3.0%) and L (1.0%) + S (1.0%). In addition, relatively low As concentrations were found in lettuce grown on amended soils with L (0.5%) and L (1.0%) + S (1.0%). Therefore, it can be suggested that soil amendments with L (0.5%) or L (1.0%) + S (1.0%) were suitable for enhancing stabilization of As in the study area.

Study on Adsorption Characteristics of Arsenic on Magnetite (자철석의 비소에 대한 흡착특성 연구)

  • Jeong, Hyeon-Su;Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • Arsenic contamination in soil and groundwater has recently been one of the most serious environmental concerns. This arsenic contamination can be originated from natural or anthropogenic sources. It has been well known that arsenic behavior in geo-environmental is controlled by various oxides or hydroxides, such as those of iron, manganese, and aluminum, and clay minerals. Among those, particularly, iron (oxy)hydroxides are the most effective scavengers for arsenic. For this reason, this study characterized arsenic adsorption of magnetite which is a kind of iron oxide in nature. The physicochemcial features of the magnetite were investigated to evaluate adsorption of arsenite [As(III)] and arsenate [As(V)] onto magnetite. In addition to experiments on adsorption equilibria, kinetic experiments were also conducted. The point of zero charge (PZC) and specific surface area of the laboratory-synthesized magnetite used as an arsenic adsorbent were measured 6.56 and $16.6\;g/m^2$, which values seem to be relatively smaller than those of the other iron (oxy)hydroxides. From the results of equilibria experiments, arsenite was much more adsorbed onto magnetite than arsenate, indicating the affinity of arsenite on magnetite is larger than arsenate. Arsenite and arsenate showed adsorption maxima at pHs 7 and 2, respectively. In particular, adsorption of arsenate decreased with increase in pH as a result of electrical repulsion caused by anionic arsenate and negatively-charged surface of magnetite. These results indicate that the surface charge of magnetite and the chemical speciation of arsenic should be considered as the most crucial factors in controlling arsenic. The results of kinetic experiments show that arsenate was adsorbed more quickly than arsenite and adsorption of arsenic was investigated to be mostly completed within the duration of 4 hours, regardless of chemical speciation of arsenic. When the results of kinetic experiments were fitted to a variety of kinetic models proposed so far, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto magnetite.

Predicting As Contamination Risk in Red River Delta using Machine Learning Algorithms

  • Ottong, Zheina J.;Puspasari, Reta L.;Yoon, Daeung;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Excessive presence of As level in groundwater is a major health problem worldwide. In the Red River Delta in Vietnam, several million residents possess a high risk of chronic As poisoning. The As releases into groundwater caused by natural process through microbially-driven reductive dissolution of Fe (III) oxides. It has been extracted by Red River residents using private tube wells for drinking and daily purposes because of their unawareness of the contamination. This long-term consumption of As-contaminated groundwater could lead to various health problems. Therefore, a predictive model would be useful to expose contamination risks of the wells in the Red River Delta Vietnam area. This study used four machine learning algorithms to predict the As probability of study sites in Red River Delta, Vietnam. The GBM was the best performing model with the accuracy, precision, sensitivity, and specificity of 98.7%, 100%, 95.2%, and 100%, respectively. In addition, it resulted the highest AUC of 92% and 96% for the PRC and ROC curves, with Eh and Fe as the most important variables. The partial dependence plot of As concentration on the model parameters showed that the probability of high level of As is related to the low number of wells' depth, Eh, and SO4, along with high PO43- and NH4+. This condition triggers the reductive dissolution of iron phases, thus releasing As into groundwater.

Exposure and human risk assessment of toxic heavy metals on abandoned metal mine areas

  • Lee Jin-Soo;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.515-517
    • /
    • 2003
  • In order to assess the risk of adverse health effects on human exposure to arsenic and heavy metals influenced by past mining activities, environmental geochemical surveys were undertaken in the abandoned metal mine areas (Dongil Au-Ag-Cu-Zn, Okdong Cu-Pb-Zn, Songcheon Au-Ag, Dongjung Au-Ag-Pb-Zn, Dokok Au-Ag-Cu and Hwacheon Au-Ag-Pb-Zn mines). Arsenic and other heavy metals were highly elevated in the tailings from the Dongil, the Songcheon and the Dongjung mines. High concentrations of heavy metals except As were also found in tailings from the Okdong, the Dokok and the Hwacheon mines. These significant concentrations can impact on soils and waters around the tailing dumps. Risk compounds deriving from mine sites either constitute a toxic risk or a carcinogenic risk. The hazard index (H.I.) of As in the Dongil, the Okdong, the Songcheon and the Hwacheon mine areas was higher value more than 1.0. In the Okdong and the Songcheon mine areas, H.I. value of Cd exceeded 1.0. These values of As and Cd were the highest in the Songcheon mine area. Therefore, toxic risks for As and Cd exist via exposure (ingestion) of contaminated soil, groundwater and rice grain in these mine areas. The cancer risk for As in stream or ground water used for drinking water from the Songcheon, the Dongil, the Okdong, the Dongjung and the Hwacheon mine areas was 3E-3, 8E-4, 7E-4, 2E-4 and 1E-4, respectively.

  • PDF

Adsorption of Arsenic onto Two-Line Ferrihydrite (비소의 Two-Line Ferrihydrite에 대한 흡착반응)

  • Jung, Young-Il;Lee, Woo-Chun;Cho, Hyen-Goo;Yun, Seong-Taek;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • Arsenic has recently become of the most serious environmental concerns, and the worldwide regulation of arsenic fur drinking water has been reinforced. Arsenic contaminated groundwater and soil have been frequently revealed as well, and arsenic contamination and its treatment and measures have been domestically raised as one of the most important environmental issues. Arsenic behavior in geo-environment is principally affected by oxides and clay minerals, and particularly iron (oxy)hydroxides have been well known to be most effective in controlling arsenic. Among a number of iron (oxy)hydroxides, for this reason, 2-line ferrihydrite was selected in this study to investigate its effect on arsenic behavior. Adsorption of 2-line ferrihydrite was characterized and compared between As(III) and As(V) which are known to be the most ubiquitous species among arsenic forms in natural environment. Two-line ferrihydrite synthesized in the lab as the adsorbent of arsenic had $10\sim200$ nm for diameter, $247m^{2}/g$ for specific surface area, and 8.2 for pH of zero charge, and those representative properties of 2-line ferrihydrite appeared to be greatly suitable to be used as adsorbent of arsenic. The experimental results on equilibrium adsorption indicate that As(III) showed much stronger adsorption affinity onto 2-line ferrihydrite than As(V). In addition, the maximum adsorptions of As(III) and As(V) were observed at pH 7.0 and 2.0, respectively. In particular, the adsorption of As(III) did not show any difference between pH conditions, except for pH 12.2. On the contrary, the As(V) adsorption was remarkably decreased with increase in pH. The results obtained from the detailed experiments investigating pH effect on arsenic adsorption show that As(III) adsorption increased up to pH 8.0 and dramatically decreased above pH 9.2. In case of As(V), its adsorption steadily decreased with increase in pH. The reason the adsorption characteristics became totally different depending on arsenic species is attributed to the fact that chemical speciation of arsenic and surface charge of 2-line ferrihydrite are significantly affected by pH, and it is speculated that those composite phenomena cause the difference in adsorption between As(III) and As(V). From the view point of adsorption kinetics, adsorption of arsenic species onto 2-line ferrihydrite was investigated to be mostly completed within the duration of 2 hours. Among the kinetic models proposed so for, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto 2-line ferrihydrite.

Phytoremediation Potential of Kenaf (Hibiscus cannabinus L.), Mesta (Hibiscus sabdariffa L.), and Jute (Corchorus capsularis L.) in Arsenic-contaminated Soil

  • Uddin Nizam, M.;Wahid-U-Zzaman, M.;Mokhlesur Rahman, M.;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.111-120
    • /
    • 2016
  • BACKGROUND: Arsenic (As)-contaminated groundwater used for long-term irrigation has emerged as a serious problem by adding As to soils. Phytoremediation potential of fiber crops viz., kenaf (Hibiscus cannabinus L.), mesta (Hibiscus sabdariffa L.), and jute (Corchorus capsularis L.) was studied to clean up As-contaminated soil.METHODS AND RESULTS: Varieties of three fiber crops were selected in this study. Seeds of kenaf, mesta, and jute varieties were germinated in As-contaminated soil. Uptake of As by shoot was significantly higher than that by root in the contaminated soil. In As-contaminated soil, kenaf and mesta varieties accumulated more As, than did jute varieties. In the plant parts above ground, mainly the shoots, the highest As absorption was recorded in kenaf cv. HC-3, followed by kenaf cv. HC-95. Kenaf varieties produced more biomass. In terms of higher plant biomass production, and As absorption, kenaf varieties showed considerable potential to remediate As-contaminated soil.CONCLUSION: The overall As absorption and phytoremediation potentiality of plant varieties were in the order of kenaf cv. HC-3 > kenaf cv. HC-95 > mesta cv. Samu-93 > jute cv. CVE-3 > jute cv. BJC-7370. All varieties of kenaf, mesta, and jute could be considered for an appropriate green plant-based remediation technology in As-contaminated soil.

Laboratory Study on the Removal of Heavy Metals Using Apatite for Stabilization of Tailings at the Ulsan Abandoned Iron Mine (울산폐철광산 광미 안정화를 위한 인회석의 중금속 제거 실내실험)

  • Choi, Jung-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to evaluate laboratory experiments on arsenic and cadmium removal from tailings using apatite at the Ulsan Abandoned Iron Mine, and to develop a stabilization technique. The results of this study show that the permeability is decreased proportionally to the amount of apatite when it is added below 8%, while this is almost constant when the amount of apatite is added above 10%. The water extraction test from tailings using deionized water for several days shows that pH (7.4-8.4) is almost constant or slightly increased when apatite is added below 8%, while it is slightly decreased when apatite is added above 10%. According to TCLP test, reduction of concentrations of heavy metals in leachate is proportional to amount of apatite added. It seems that precipitates generated from leachate-apatite chemical reaction are not redissolved. As a result, cadmium and arsenic in leachate is mostly removed when apatite is added above 10%, and it is suggested that a proper technique should be selected for field application because either mixed or layered method shows almost same removal efficiencies of cadmium and arsenic in tailings.