• Title/Summary/Keyword: ground-wave

Search Result 884, Processing Time 0.037 seconds

Spatially variable effects on seismic response of the cable-stayed bridges considering local soil site conditions

  • Tonyali, Zeliha;Ates, Sevket;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.143-152
    • /
    • 2019
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated for variable local soil cases and wave velocities. Quincy Bay-view cable-stayed bridge built on the Mississippi River in Illinois, USA selected as a numerical example. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. The spatial variability of the ground motion is considered with the coherency function, which is represented by the components of incoherence, wave-passage and site-response effects. The incoherence effect is investigated by considering Harichandran and Vanmarcke model, the site-response effect is outlined by using hard, medium and soft soil types, and the wave-passage effect is taken into account by using 1000, 600 and 200 m/s wave velocities for the hard, medium and soft soils, respectively. Mean of maximum response values obtained from the analyses are compared with those of the specific cases of the ground motion model. It is concluded that the obtained results from the bridge model increase as the differences between local soil conditions cases of the bridge supports change from firm to soft. Moreover, the variation of the wave velocity has important effects on the responses of the deck and towers as compared with those of the travelling constant wave velocity case. In addition, the variability of the ground motions should be considered in the analysis of long span cable-stayed bridges to obtain more accurate results in calculating the bridge responses.

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

Antenna Factors of Half-wave Resonance Dipole Antennas above the Ground Plane (접지판 위에 놓여진 반파장 공진다이폴 안테나의 안테나 인자)

  • Ki-Chai Kim
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.3-9
    • /
    • 1991
  • This paper presents the characteristics of antenna factors of half-wave resonance dipole antennas above a ground plane. The current distributions on a horizontal and vertical dipole antennas were analyzed by the Galerkin's method of moments, and these solutions are used for calculating the horizontal and vertical antenna factors above the ground plane. It is shown that accurate antenna factors of the horizontal and vertical dipole above the ground plane are required of the radiated emission test.

  • PDF

Design of Decoupled PMC-backed Air Waveguide Antenna for Continuous Wave Ground Penetrating Radar (상호 결합을 최소화한 연속파(CW) Ground Penetrating Radar(GPR)용 공기 도파관 안테나 설계)

  • 제도흥;나정웅
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.177-180
    • /
    • 2001
  • A decoupled, wide-band, perfectly magnetically conductor(PMC)-backed air waveguide antenna is designed and constructed for the use of the continuous electromagnetic wave ground penetrating radar in the frequency range from 200MHz to 600MHz. Two planar dipoles are located inside air slab covered by PMC on the top side and separated by an air gap from the bottom ground interface. The coupling between the transmitting and the receiving dipoles is calculated by less than -60dB over the frequency from 200MHz to 600MHz.

  • PDF

Ground Vibration Analysis Methods for Train Transit on Bridges (교량구간에서의 열차하중에 의한 지반진동 해석법)

  • 윤정방;이종재;김두기;심종민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.357-364
    • /
    • 1998
  • In this paper, ground vibration analysis methods for train transit on bridges are studied. Train loads acting on the piers are evaluated considering the interactions between the trains and the bridge. The 2D in-plane wave propagation method and the axisymmetric wave propagation method are used in the ground vibration analysis, and then the results of the ground vibration are compared. A modified axisymmetric method is presented, which can consider the effect of the train loadings on a series of piers as the train moves.

  • PDF

Study of Application for Using Nondestructive Method in Gravel Area (사석 성토 지역의 비파괴 조사 기법 적용성 연구)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.49-56
    • /
    • 2023
  • Gravel is commonly employed to enhance the bearing capacity of foundations and provide stable support for structures. However, effectively assessing the ground characteristics in the presence of gravel poses significant challenges. This study aims to compare the resolution of ground containing gravel using electrical resistivity, elastic wave surveys, and ground penetration radar (GPR). Nondestructive methods are applied at construction sites where soil improvement is carried out using gravel. The experiments focus on shallow depths, and the obtained results cover depths up to 2 m. Both the electrical resistivity and elastic wave techniques exhibit similar behavior in their findings, indicating comparable outcomes. However, GPR has limitations in observing the characteristics of ground with gravel. Dynamic cone-penetration tests were conducted to validate these findings. The electrical resistivity and elastic wave profiles exhibited similar behaviors in localized areas, further supporting their compatibility and reliability.

Effect of Wave Load on the Member Force of Steel Structure of Floating Buildings

  • Lee, Young-Wook;Park, Tae-Jun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1431-1439
    • /
    • 2018
  • For floating buildings may fl oat on the water for a long time, they are constantly affected by various environmental loads such as wind and wave loads. In this study to find the wave effect on the floating building, five models are designed using steel moment resisting frame. It is assumed that the lower part of the floating building is a reinforced concrete pontoon, while the upper part is a three-story steel frame. To analyze floating buildings affected by wind and wave loads, hydro-dynamic and substructure analysis are performed. As input loads, this study set limits that the mean wind velocity is 35 m/s and the significant wave height is 0.5 m for the residential building. From the hydrodynamic analysis, the time-history acceleration of building is obtained and transformed into a base ground input for a substructure analysis of the superstructure of the building. Finally the mean of the maximum from 30 dynamic analysis of the floating buildings are used to be compared with the results of the same model on the ground. It was shown that the dynamic results with wind and wave loads are not always lesser than the static results which are calculated with static equivalent wind load for a building that is located on the ground.

Contribution of local site-effect on the seismic response of suspension bridges to spatially varying ground motions

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1233-1251
    • /
    • 2016
  • In this paper, it is aimed to determine the stochastic response of a suspension bridge subjected to spatially varying ground motions considering the geometric nonlinearity. Bosphorus Suspension Bridge built in Turkey and connects Europe to Asia in Istanbul is selected as a numerical example. The spatial variability of the ground motion is considered with the incoherence, wave-passage and site-response effects. The importance of site-response effect which arises from the difference in the local soil conditions at different support points of the structure is also investigated. At the end of the study, mean of the maximum and variance response values obtained from the spatially varying ground motions are compared with those of the specialised cases of the ground motion model. It is seen that each component of the spatially varying ground motion model has important effects on the dynamic behaviour of the bridge. The response values obtained from the general excitation case, which also includes the site-response effect causes larger response values than those of the homogeneous soil condition cases. The variance values calculated for the general excitation case are dominated by dynamic component at the deck and Asian side tower. The response values obtained for the site-response effect alone are larger than the response values obtained for the incoherence and wave-passage effects, separately. It can be concluded that suspension bridges are sensitive to the spatial variability of ground motion. Therefore, the incoherence, the wave-passage and especially the site-response effects should be considered in the stochastic analysis of this type of engineering structures.

A GNSS Interference Detection Method Based on Multiple Ground Stations

  • Kim, Sun Young;Kang, Chang Ho;Yang, Jeong Hwan;Park, Chan Gook;Joo, Jung Min;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • For a GNSS receiver's robustness against RFI and the high accuracy of navigation solution in GNSS, interference source detection and mitigation are needed. In this paper, an adaptive lattice IIR notch filter is employed to track single-tone continuous wave and swept continuous wave interference signals, and an interference detection method is proposed. Furthermore, this paper presents interference source characterization algorithm using multiple ground stations' interference detection results. The measurement of the signal powers from each ground station is used to build weighting factors to estimate the type of the interference. The performance of interference detection algorithm is simulated for scenarios of GPS signal in the presence of single-tone continuous wave interference and swept continuous wave interference.

A study on new soil investigation method using seismic waves generated by dynamic penetration blows

  • Saito Hideki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.3-9
    • /
    • 2005
  • In order to obtain more reliable data for the information on the ground, a new site Investigation method is proposed, in which seismic waves (S-waves) generated by the Swedish Ram Sounding Test (SRS) are used. It is indicated that the energy transferred from the hammer to the rod in SRS's is much more stable, compared to SPT's. A series of SRS with measurements of seismic waves at the ground surface were carried out to clarify the characteristics of seismic wave propagation in the ground. As the results of comparison between seismic S-wave amplitudes and $N_d$ (blow count for 20 cm penetration in SRS), it was found that amplitudes of S-waves generated by SRS correlate well with $N_d$. The amplitude of the S-wave is thought to be more adequate parameter for the soil strength and rigidity than $N_d$.

  • PDF