• Title/Summary/Keyword: ground type

Search Result 2,232, Processing Time 0.034 seconds

Coupling mechanism of a loop-type ground radiation antenna

  • Zahid, Zeeshan;Kim, Hyeongdong
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.528-535
    • /
    • 2019
  • The coupling mechanism of a loop-type ground radiation antenna is investigated in this paper. We use the equivalent circuit model of the antenna and a full-wave simulation to explain the coupling mechanism of the antenna. We analyze the effects of various antenna parameters on the coupling between the antenna element and the ground plane to examine the conditions for enhancing the coupling. Based on simulations with the equivalent circuit model, full-wave simulations, and measurements, we propose optimal design considerations for the antenna. The findings of this study will aid the design and understanding of loop-type ground radiation antennas for mobile devices.

Cutting Performance Evaluation of Non-Ground Cross-hole Type Milling Insert (Cross-hole Type 밀링용 비 연삭 인서트의 가공성능평가)

  • Park, Hwi-Keun;Kim, Taeck-Su;Lee, Sang-Min;Lee, Won-Suk;Choi, Yun-Seo;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • The existent cutting insert have occupied most product of grinding style, because it has a problem of accuracy and manufacturing process. The product has a concept but development is difficult, because grinding and manufacturing by press are impossible. But by development and stabilization of a technology, preference of non-ground insert increases gradually. And then insert that grinding is impossible is developed availably as non-ground product by using developed equipment and software. In this paper reports some experimental results on the machining performance of non-ground Cutting inserts. Three kinds of Cutting inserts were manufactured without using grinding process. Machining experiments were carried out to compare the machining performance of non-ground inserts with that of ground ones. The experimental results indicate that the cutting forces and tool wear and surface roughnesses of machined surface of both ground and non-ground inserts are comparable.

A Study on Effective Energy Use of the Open Type Ground Heat Exchanger Using Underground Temperature Gradient (지중온도 경사를 이용한 효율적 지중에너지 이용 방안에 관한 연구)

  • Ryu, Hyungkyou;Chung, Minho;Lee, Byungseok;Rhew, Hyojun;Choi, Hyunjun;Choi, Hangseok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.401-408
    • /
    • 2014
  • This paper proposes an optimum operation method for open type ground heat exchangers. A series of TRTs and artificial heating/cooling operations were carried out while monitoring temperature in the hole of SCW. The ground temperature naturally increases with depth, but a switch between the cooling/heating mode results in a change in the distribution of ground temperature. The effect of the mode change was evaluated by performing LMTD and COMSOL multiphysics analysis for a reduced model with the depth of 150 m. As a result, in the cooling mode, the upstream operation is more efficient than the downstream operation and reduces EWT by $2.26^{\circ}C$. On the other hand, in the heating mode, the downstream operation is advantageous over the upstream operation and increases EWT by $3.19^{\circ}C$. The merit of the optimum operation will be enhanced for the typical dimension of SCW with a depth of 400~500 m. In the future, an open type ground heat exchanger system adopting the optimum operation with variation in the ground temperature will be used in practice.

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

Characteristics of Occupational Accidents by Type of Parking Lot

  • Park, Myoung Hwan;Jeong, Byung Yong;Park, Cha-O-Rum
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.427-436
    • /
    • 2015
  • Objective: This study aims to analyze occupational accidents of parking lot attendants by parking lot type. Background: Recently, efforts are made to analyze accident characteristics by occupation type targeting the workers engaged in the same work. Method: This study analyzes 303 occupational accidents of parking lot attendants occurring from 2010 to 2012. Parking lots are grouped into two groups according to the work environment. One is public/ground type which comprises road side or open area parking lots and the other is building/mechanical type which comprises a multi-story parking building with connecting ramps and/or mechanical parking system. The characteristics of occupational accidents by parking lot type are analyzed. Results: Accident characteristics showed the difference between public/ground type and building/mechanical type on the size of enterprise, age, gender and work experience of the injured. Also the accident type, source of accident and parts of body affected are different between the two parking lot types. Conclusion and Application: The findings of accident characteristics according to parking lot types can be used as baseline data for establishing systemized preventative policies for occupational accidents of parking lot attendants.

Performance Analysis of Ground-Coupled Heat Pump System with Slinky-Type Horizontal Ground Heat Exchanger (수평형 지열 히트펌프 시스템의 냉난방 성능 분석)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.230-239
    • /
    • 2012
  • Ground-coupled heat pump (GCHP) systems utilize the immense renewable storage capacity of the ground as a heat source or sink to provide space heating, cooling, and domestic hot water. The main objective of the present study is to investigate the cooling and heating performance of a small scale GCHP system with horizontal ground heat exchanger (HGHE). In order to evaluate the performance, a water-to-air ground-source heat pump unit connected to a test room with a net floor area of 18.4 m2 and a volume of 64.4 m3 in the Korea Institute of Construction Technology ($37^{\circ}39'N$, $126^{\circ}48'E$) was designed and constructed. This GCHP system mainly consisted of slinky-type HGHE with a total length of 400 m, indoor heat pump, and measuring devices. The peak cooling and heating loads of the test room were 5.07 kW and 4.12 kW, respectively. The experimental results were obtained from March 15, 2011 to August 31, 2011 and the performance coefficients of the system were determined from the measured data. The overall seasonal performance factor (SPF) for cooling was 3.31 while the system delivered heating at a daily average performance coefficients of 2.82.

Seismic characteristics of a Π-shaped 4-story RC structure with open ground floor

  • Karabini, Martha A.;Karabinis, Athanasios J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • The configuration of an open ground floor (pilotis) is a common and very critical irregularity observed in multistory reinforced concrete frame structures. The characteristics and the geometrical formation of the beams of the first story proved to be a critical parameter for the overall seismic behavior of this type of Reinforced Concrete (RC) structures. In this work the combination of open ground floor (pilotis) morphology with very strong perimetrical beams at the level of the first story is studied. The observation of the seismic damages and the in situ measurements of the fundamental period of four buildings with this morphology and Π-shaped plan view are presented herein. Further analytical results of a pilotis type Π-shaped RC structure are also included in the study. From the measurements and the analytical results yield that the open ground floor configuration greatly influences the fundamental period whereas this morphology in combination with strong beams can lead to severe local shear damages in the columns of the ground floor. The structural damage was limited in the columns of the ground floor and yet based on the changes of the in situ measured fundamental period the damaged level is assessed as DI=88%. Furthermore, due to the Π-shape of the plan view the tendency of the parts of the building to move independently strongly influences the distribution of the damages over the ground floor vertical elements.

Characteristics of Potential Gradient for the Type of Structure Grounding Electrode (구조체 접지전극의 유형에 따른 전위경도 특성)

  • Gil Hyung-Jun;Choi Chun-Seog;Kim Hyang-Kon;Lee Bok-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.8
    • /
    • pp.371-377
    • /
    • 2005
  • This paper Presents the Potential gradient characteristics of structure grounding electrode when a test current flows through grounding electrode. In order to analyze the potential gradient of ground surface on structure grounding electrode, the reduced scale model has been used. The potential gradient has been measured and analyzed for types of structure using the hemispherical grounding simulation system in real time. The structures were designed through reducing real buildings and fabricated with four types on a scale of one-one hundred sixty. The supporter was made to put up with weight of structure and could move into vertical, horizontal, rotary direction. When a test current flowed through structure grounding electrodes, ground potential rise was the lowest value at electric cage type(type B). According to resistivity and absorption percentage In concrete attached to structure, the potential distribution of ground surface appeared differently.

Measurements of In-situ Thermal Conductivity of Closed Type Ground Heat Exchanger in Korea (국내의 주요 지역에서 밀폐형 열교환기의 열전도도 측정)

  • Jung, Kye-Hoon;Lim, Hyo-Jae;Han, Ji-Won;Park, Kyung-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3401-3406
    • /
    • 2007
  • This study was performed to acquire the reliable in-situ thermal conductivity of closed type ground heat exchanger used in ground source heat pump. We selected four sites(Cheonan, Daejeon, Daegu, Gwangju) which are central area of South Korea. Test results show that the effective thermal conductivities are 2.33 W/m$^{\circ}C$, 2.50 W/m$^{\circ}C$, 2.75 W/m$^{\circ}C$ and 2.86 W/m$^{\circ}C$. From this data, we can see that thermal conductivity varies about the range of 23% with the sites. Also, thermal conductivity increases up to 20% by changing grouting material from low salica sand to high one.

  • PDF

Development of a Contact Type Height Sensor to Measure Ground Clearance of an Agricultural Tractor (농용 트랙터용 접촉식 지상고 측정 센서 개발)

  • Lee, Choong-Ho;Lee, Je-Yong;Lee, Sang-Sik
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • The tillage depth control system is one of the most salient control system of tractor implements. A contact-type height sensor was developed to measure ground clearance for the tillage depth control. The height sensor was fabricated in this study, and its efficacy in a tillage depth control system was evaluated. Experiments were conducted in order to determine both static and dynamic detection characteristics of the height sensor using soil bin system on the sampled soil (sandy loam, sand, clay loam). The results of the static detection characteristics showed that in the case, sandy loam soil despite and clay loam soil at a wet basis moisture content of 30%, large measurement errors were observed a due to penetration of a plastic puck into the sampled soil. The results of the dynamic detection characteristics showed that the height sensor detected the distance from the ground of sandy loam soil despite the uneven nature of the ground surface and the changes in traveling speed $1km/h{\sim}5km/h$ at a wet basis moisture content of 10%.