• Title/Summary/Keyword: ground track analysis

Search Result 137, Processing Time 0.031 seconds

A study of Heat Analysis on Track Rubber Parts (궤도고무부품의 열해석에 관한 연구)

  • Kim, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.117-122
    • /
    • 1999
  • Track rubber parts has heat built-up as long as dynamic loading is applied from running tracked vehicles. Durability is required for rubber part to sustain the heat accumulation and heat exchange between rubber-metal assembly and environmental air and ground. For this research, the track assembly was divided into four parts i.e., bottom track shoe, upper track pad, pin busing and metal structure. Three rubber parts and metal structure were modelled and analyzed with MARC package program to obtain time-temperature data which was induced form mechanical work of tracked vehicles. heat accumulation data was obtained from special experiments under the room temperature of 25$^{\circ}C\;and\;35^{\circ}C$ to simulate the actual environmental conditions. From this research, it is cleared that the environmental temperature does not affect to the heat accumulation speed in rubber parts. Also, the heat built-up mechanism was clarified from the thermo-mechanical work based on numerical analysis and experiments.

  • PDF

Analysis of Satellite Orbit Elements and Study of Constellation Methods for Micro-satellite System Operation (초소형위성체계 운용을 위한 위성궤도요소 분석 및 위성군 배치기법에 대한 고찰)

  • Soung Sub Lee;Jihae Son;Youngbum Song
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • This study analyzes considerations for satellite orbit elements for the national micro-satellite system to effectively perform its mission in accordance with the operational concept, and compares the conventionally used Walker method to improve the performance of the satellite constellation method of the repeating ground track orbit. In satellite orbit element analysis, altitude candidate values of micro-satellite system, use of eccentricity and argument of perigee through frozen orbit, necessity of selection of appropriate orbit inclination, and satellite phasing rules for flying the same repeating ground track orbit are proposed. Based on these analysis results, the superiority of the constellation method of the repeating ground track orbit compared to the Walker method is verified in terms of revisit performance analysis, global coverage characteristics, and orbit consistency.

Development of Analysis Method and Computer Program for Train-induced Ground Vibration (철도연변 지반진동 예측기법 및 전산프로그램 개발)

  • 황선근;엄기영;고태훈;이종재
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.203-210
    • /
    • 2000
  • Recently, environmental vibration by train operation has been getting such an attention that the ISO puts it into the environmental vibration regulation. However, the reasonable and efficient countermeasures against such a kind of vibration is not well established, especially in residential areas near the railroad. Therefore, it is very important to estimate the ground vibration induced by the train operation for the design and construction of track supporting structures as well as structures near the track. In this study a model estimating dynamic load on track due to train operation and analysis technique of propagation of ground vibration were developed. Futhermore, the estimated vibration from this model was compared with the actual measurement data in the field and found to be reasonably acceptable.

  • PDF

Dynamic analysis of railway vehicle by using track coordinates (트랙 좌표계를 이용한 철도차량 운동 해석)

  • Kang, Ju-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.818-823
    • /
    • 2011
  • 6-generalized coordinates of absolute translational displacements and angular displacements measured at Cartesian coordinates system fixed at the ground has been used to describe general dynamic behavior of a rigid body in mechanical systems. However, track coordinates system moving with the centerline of the track can be used to develop dynamic formulations for railway vehicle. It is easy to impose the constraints of track coordinates by the virtue of track coordinates system moving with track centerline. In this analysis, dynamic equations of railway vehicle by using track coordinates system is derived and the simulation results are presented.

  • PDF

Parameter Study of Track Deformation Analysis by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 지하철 궤도 변형 해석을 위한 매개변수 연구)

  • Choi, Jung-Youl;Cho, Soo-Il;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.669-675
    • /
    • 2020
  • In this study, 3D analysis was compared in evaluating the track deformation of subway structures during adjacent excavation. For the 3D analysis model, the boundary conditions of the tunnel model and the application level of the ground water were analyzed as variables. As the result of the effects of track irregularity using the 3D model, the analysis model considering the site ground water level instead of the design values and changing the constraint of the boundary condition is more reasonable. In addition, the influence of track irregularity due to the boundary condition and load condition of the analytical model is more obvious in the factors directly affected by the longitudinal relative displacement of the rail, such as alignment, cross level and gauge irregularity. Therefore, the evaluation on track stability according to adjacent excavation work was appropriate to analysed the longitudinal deformation of the track by using 3D model that could be investigate the deformation of rail. In addition, the boundary condition and load condition(ground water level) of the numerical model was important for accurate analysis results.

Investigation on ground displacements induced by excavation of overlapping twin shield tunnels

  • Qi, Weiqiang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Shao, Xiaokang;An, Hongbin
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.531-546
    • /
    • 2022
  • Ground displacements caused by the construction of overlapping twin shield tunnels with small turning radius are complex, especially under special geological conditions of construction. To investigate the ground displacements caused due to shield machines in the unique calcareous sand layers in Israel for the first time and determine the main factors affecting the ground displacements, field monitoring, laboratory geological analysis, theoretical calculations, and parameter studies were adopted. By using rod extensometers, inclinometers, total stations, and automatic segment-displacement monitors, subsurface tunneling-induced displacement, surface settlement, and displacement of the down-track tunnel segments caused by the construction of an up-track tunnel were analyzed. The up-track tunnel and the down-track tunnel pass through different stratum, resulting in different construction parameters and ground displacements. The laws of variation of thrust and torque, soil pressure in the chamber, excavated soil quantity, synchronous grouting pressure, and grout volume of the two tunnels from parallel to fully overlapping orientations were compared. The thrust and torque of the shield in the fine sand are larger than those in the Kurkar layer, and the grouting amount in fine sand is unstable. According to fuzzy statistics and Gaussian curve fitting of the shield tunneling speed, the tunneling speed in the Kurkar stratum is twice that in the fine-sand stratum.

A Study on Track Deformation Characteristics of Turnout System by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 도시철도 분기기 궤도의 변형 특성에 관한 연구)

  • Kim, Hae-Sung;Choi, Jung-Youl;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.477-482
    • /
    • 2022
  • The structure of the turnout track is very complex, so it is a facility that is more difficult to maintain and requires detailed management than a general track type. The purpose of this study is to analyze the effect on the deformation of the turnout system of the ground section due to the excavation work adjacent to the serviced urban railways. In this study, based on finite element analysis for each stage of adjacent excavation, the track deformation for each major location of turnout system was analyzed in consideration of the layout of the turnout system installed on the ground section, and the safety and stability was confirmed by comparing it with the track irregularity regulation. As a result of the study, it was found that the major construction stage affecting the track deformation of the turnout system on the ground section was the final stage of excavation. In addition, although the vertical displacement which is a vertical irregularity occurred relatively large, it was analyzed that the horizontal deformation was dominant overall, because of the excavation site is located on the side of the turnout system. In addition, it was analyzed that the amount of displacement at each major location of the turnout system is different, and there is a possibility that there may be a twist irregularity due to the deviation of the track deformation for each location according to the distance from the excavation site. Therefore, it was analyzed that it is necessary to classify and manage the importance of the track deformation of the turnout system of actual operating line, including additional displacement due to adjacent excavation, based on the track irregularity that has occurred at each location where the major deformation characteristics occur.

A Comparison of Ground Reaction Force of High School Swimmers in Accordance with Starting Motions (수영 출발동작의 지면반력 차이 비교 II)

  • Kim, Kew-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.69-80
    • /
    • 2007
  • The purpose of this study was to investigate the difference of ground reaction forces of swimming athletes during their starting motion and to find out the most effective starting motions which were used in swimming athletes. The subjects were 9 male and 8 female high school swimming athletes who were athletic career over 7 years and used three starting motions in competition. The ground reaction forces were measured from each athletes performing three starting motion each of the open grap starting motion, closed grap starting motion and track starting motion. For the measurement, the force platform of AMTI company was utilized, and the analysis on measured ground reaction forces were used of Biosoft(Ver. 1.0). The items measured were stance time, Fz max deceleration force and Fz max deceleration force time, Fz mid stance force and Fz mid stance force time, Fz max acceleration force and Fz max acceleration force time, Torque maximum and Torque maximum time, Torque average, Excursion along Y axis of center of pressure of foot, Excursion along X axis of center of pressure of foot, Length of center of pressure of foot, Average velocity of center of pressure of foot. The data measured by the closed grap starting motion, open grap starting motion and track starting motion were analyzed by one-way repeated ANOVA. The results were as follows ; 1. The Fz max deceleration force time, Fz mid stance force, Fz max acceleration force, Torque maximum and Torque maximum time, Excursion along Y axis of center of pressure of foot, Average velocity of center of pressure of foot were significantly fast and large in the closed grap starting motion then open grap starting motion and track starting motion. 2. The Excursion along Y axis of center of pressure of foot was significantly long in the closed grap starting motion then open grap starting motion and track starting motion.

Off-road tractive performance of tracked vehicles and the effects of soil parameters (궤도차량의 야지기동성 평가와 토지특성의 영향)

  • 김진우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.76-84
    • /
    • 1991
  • The off-road tractive performance of tracked vehicles can be evaluated in terms of soil thrust, motion resistance and drawbar pull. The ability to predict accurately ground pressure distribution under track is of importance since the vehicle sinkage and motion resistance are closely related to it. While the formulation of the method for predicting ground pressure distribution follows closely in spirit the ideas outlined for the terrain with linear pressure- sinkage relation case by Garber and Wong, the analysis of various terrain stiffness is magnified by numerical implementation procedure. The effects of soil parameters on tractive forces can be introduced through the terrain-track interaction such as pressure-sinkage and shearing characteristics. It is illustrated by determining the drawber pull-slip relation and corresponding ground pressure distribution for the terrains typically chosen and by comparing the results with the conventional ones based on normal ground pressure. The factorial experiment method is finally adopted for checking the sensitivity of the values of soil parameters on the drawbar pull.

  • PDF

An analysis study on earth pressure trends during construction of Gyungbu High Speed Railway using Concrete Track (콘크리트궤도 적용 경부고속철도의 시공 중 토압 경향 분석 연구)

  • Kim, Ki-Hwan;Kim, Dae-Sang;Na, Sung-Hoon;Shin, Ki-Dae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.671-679
    • /
    • 2010
  • The construction of concrete track for the first time in Korea gives lots of meanings to civil engineering in various aspects. Settlement level needs to be kept minimal for the safety of the track. Concrete track has different structural characteristics comparing to conventional ballast track, so load distribution in concrete track is also different. Since it is the first time to build concrete track, there are very few experience and data available on the subject. Therefore it is important to evaluate how much load is transferred to the ground due to the running vehicle in concrete track and to determine the optimal thickness of layers. In this research, 9 individual earth pressure cells were installed at OOOk930 site in 2nd stage of Kyungbu high speed railway during under construction. The in-situ pressure data were measured at each layers during pump-car and locomotive were moving on the high speed railway surface.

  • PDF