• Title/Summary/Keyword: ground surface reinforcement method

Search Result 70, Processing Time 0.028 seconds

A Study on the tension of Geogid on Pile-supported Construction Method (성토지지말뚝공법 중 섬유보강재의 인장력 검토에 관한 연구)

  • Moon, In-Ho;Park, Jong-Gwan;Lee, Il-Wha
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.905-917
    • /
    • 2008
  • Road or Railway construction over soft ground is needed to be considered on secondary consolidation which will be caused differential settlement, lack of transport serviceability, higher maintenance cost. Especially for the railway construction in the second phase of Gyung-Bu or Ho-Nam high speed railway, concrete slab track has been adapted as a safe and cost effective geotechnical solution. In this case controlling the total settlement under the tolerance is essential. And pile supported geogrid reinforced construction method is suggested as a solution for the problem of the traditional method on soft soil treatments. Pile supported geogrid reinforced construction method consists of piles that are designed to transfer the load of the embankment through the compressible soil layer to a firm foundation. The load from the embankment must be effectively transferred to the piles to prevent punching of the piles through the embankment fill creating differential settlement at the surface of the embankment. The arrangement of the piles can create soil arching to carry the load of embankment to the piles. In order to minimize the number of piles geogrid reinforced pile supported construction method is being used on a regular basis. This method consists of one or more layers of geogrid reinforcement placed between the top of the piles and the bottom of the embankment. This paper presents several methods of pile supported geogrid reinforced construction and calculation results from the several methods and comparison of them.

  • PDF

Case Study on the Seismic Refraction Survey in a Subsidence Area (지반침하지역에서의 탄성파 굴절법 탐사 적용사례)

  • Yun, Sang-Ho;Ji, Jun;Lee, Doo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.577-584
    • /
    • 2000
  • Seismic refraction survey was peformed for 10 lines along NE-SW and NW-SE directions above Nampoong gallery at Makyo-ri, Dogye, Samcheok, Kangwon-do. 48 geophones were laid in line with the interval of 1m, and a 5Kg hammer was used as a source at 5 points for each line. Data processing was done using reciprocal time method, GRM, and traveltime tomography which utilizes wavefront expansion method for forward process and SIRT for inversion. The result shows that the first layer has its lower boundary between 3.49m and 8.88m. The P-wave velocity of the first and the second layer were estimated as 270 360m/s and 1550 1940m/s respectively. When the boundary of the first and second layer is smooth enough and the velocity difference is large enough, GRM has little advantage over reciprocal time method. The result of reciprocal method and traveltime tomography shows consistency. The northeast part of the boundary has syncline structure, which is similar to the topography above. This implies that the collapse of the cavities of Nampoong gallery result in the subsidence of the ground surface. The subsidence is in progress across the Youngdong railroad, therefore a proper reinforcement work is required.

  • PDF

Application of Sand Mat Substitutel using Steel Slag (제강슬래그를 이용한 샌드매트 대체재료의 적용성 연구)

  • Park, Jong-Beom;Lee, Byung-Chan;Ju, Jae-Woo;Na, Hyun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • Steel slag has the nature to hydrate and expand when in contact with non-reacting CaO and water, and thus can be used only in limited scope for landfill disposal as well as for recycling as civil construction aggregates. In order to use such steel slags more efficiently, the applicability of steel slag as sand mat alternative material was reviewed. In general, sand mat is used in soft ground surface reinforcement method and horizontal drain method, and is installed simultaneously with soft ground vertical drain method. Therefore in this study steel slag designing method and application standard etc were examined to recycle steel slag as sand mat alternative material, and laboratory soil test and model test were done. Test results indicated that the designing method and application standard meet various environment and quality standards, meaning that steel slag can be utilized as sand mat alternative material, and analysis of slag mat bearing capacity also indicated that use of steel slag produces double or more bearing capacity compared with existing sand mat.

Variation of Earth Pressure Acting on the Cut-and-Cover Tunnel Lining due to Geotextile Mat Reinforcement (지오텍스타일 매트의 설치에 의한 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista, F.E.;Park, Lee-Keun;Im, Jong-Chul;Joo, In-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.25-40
    • /
    • 2007
  • Excessive earth pressure is one of the major mechanical factors in the deformation and damage of Cut-and-Cover Tunnel lining in shallow tunnels and portals of mountain tunnels (Kim, 2000). Excessive earth pressure may be attributed to insufficient compaction and consolidation of backfill material due to self-weight, precipitation and vibration caused by traffic (Komiya et al., 2000; Taylor et al., 1984; Yoo, 1997). Even though there were a lot of tests performed to determine the earth pressure acting on the tunnel lining, unfortunately there were almost no case histories of studies performed to determine remedial measures that reduce differential settlement and excessive earth pressure. In this study the installation of geotextile mat was selected to reduce the differential settlement and excessive earth pressure acting on the cut-and-cover tunnel lining. In order to determine settlement and earth pressure reduction effect (reinforcement effect) of geotextile mat reinforcement, laboratory tunnel model tests were performed. This study was limited to the modeling of rigid circular cut-and-cover tunnel constructed at a depth of $1.0D\sim1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. Model tests with varying soil cover, mat reinforcement scheme and slope roughness were performed to determine the most effective mat reinforcement scheme. Slope roughness was adjusted by attaching sandpaper #100, #400 and acetate on the cut slope surface. Mat reinforcement effect of each mat reinforcement scheme were presented by the comparison of earth pressure obtained from the unreinforced and mat reinforced model tests. Soil settlement reduction was analyzed and presented using the Picture Analysis Method (Park, 2003).

A Examination on Stability of Dam using 3D Laser Scanning System (3D Laser Scanning을 이용한 댐체의 안정성 검토)

  • Lee, Jae-One;Shon, Ho-Woong;Yun, Bu-Yeol
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.451-454
    • /
    • 2007
  • There is an inseparable relation between human race and engineering work. As world developed into highly industrialized society, a diversity of large structures is being built up correspondently to limited topographical circumstance. Though large structures are national establishments which provide us with convenience of life, there are some disastrous possibilities which were never predicted such as ground subsidence and degradation. It is very difficult to analyze the volume of total metamorphosis with the relative displacement measurement system which is now used and it is impossible to know whether there is structural metamorphosis within a permissible range of design or not. In this research with an object of 13-year-old earthen dam, through generating point-cloud which has 3D spatial coordinates(x, y, z) of this dam by means of 3D Laser Scanning, we can get real configuration data of slanting surface of this dam with this method of getting a number of 3D spatial coordinates(x, y, z). It gives 3D spatial model to us and we can get various information of this dam such as the distance of slanting surface of dam, dimensions and cubic volume. It can be made full use of as important source material of reinforcement and maintenance works to detect previously the bulging of the dam through this research.

  • PDF

A Study on Soil Improvement Agent for Rainfall-Induced Erosion on the Soil Slope (흙 사면의 강우 침식보강을 위한 토양개량제 개발에 관한 연구)

  • Kang, Dae-Heung;Kim, Young-Suk;Hwang, In-Taek;Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.237-246
    • /
    • 2021
  • With climate change, debris flow has been increasing due to the collapse and erosion of shallow slopes caused by extreme rainfall. It is preferred to an economical and eco-friendly method rather than reinforcement of soil slopes with the earth anchor or nailing method. In this study, a soil improvement agent was developed by utilizing insitu soil, leaf mold, and used harbal medicine to help sufficient vegetation. In addition, to prevent surface erosion, shear strength of the soil was increased by using micro cement and hemihydrate gypsum as additives. The optimum mix ratio of the mixture is determined by increasing the shear strength by checking the erosion progress of the ground surface layer due to rainfall through an laboratory test. The safety factor of soil slope has been improved on the slope surface reinforced by the improvement agent, and the strength of erosion has been increased, making it efficient to cope with heavy rain during wet season.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

A Study on the Stability Analysis of Reinforced Embankment on the Soft Ground (연약지반상의 보강성토의 안정해석에 관한 연구)

  • 임종철;전미옥;박이근;정연인
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.285-296
    • /
    • 1999
  • Preloading method is used to prevent the settling of a foundation and to increase the strength of ground by consolidation settlement in advance. But, the embankment used in preloading method brings large deformation and sliding failure in the soft ground. Recently, reinforcement method is often used in embankment in order to prevent sliding failure. But, until now, the research on the stability analysis considering both the rate of strength increase of clay by embankment load and increase of resistance force by the geosynthetics in the embankment body is not found. In this study, the stability analysis program(REAP) for embankment including these two points is developed. By this program(REAP), the stability analysis can be done about during the gradual increase of embankment and the stability counterplan can be established when the safety factor is lower than allowable safety factor of design. After calculating the position of sliding failure surface, the force of geosynthetics which is selected by either the effective tensile strength or tensile force caused by the displacement of soil mass in this position is applied to stability analysis. And the increase of resisting moment can be calculated by this force. Also, the construction period can be estimated and the time for the appropriate counterplan can be decided in order to maintain the stability of embankment. And then, safe and economical embankment design can be performed.

  • PDF

A Study on Improved Inspection Method of the Foundation Scouring and Establishment of 3D Underwater Surface Map (개선된 교량 기초세굴 점검방법 및 3D 하상지도 구축 연구)

  • Choi, Hyun-Chul;Ko, Jun-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.161-170
    • /
    • 2022
  • The maintenance of bridges installed in rivers is carried out through facility safety inspection and repair & reinforcement procedures according to the results. Many studies have been so far conducted on the safety check of the bridge upperstructure because of the ease of access. However as it is impossible to directly investigate whether the pier foundation installed in the river has been scoured. Management of underwater foundations has remained based on theory. In this study, the scour of the bridge foundation installed in such a river was realized in 3D form by using an echo sounder and VRS. This made it possible to predict the scour pattern through comparison and analysis with the ground height of the riverbed at the time of the bridge installation. Based on these results, if the pier foundation is used as an initial data to determine whether or not local scour is present and to predict long-term scouring, bridge collapse due to foundation scour can be prevented.

Pullout Characteristics of Reinforcing Body Using Pressure Re-injection Grouting Method (압력재주입 그라우팅 방식을 이용한 보강재의 인발특성)

  • Lee, Bongjik;Kim, Sangsu;Youn, Junsik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.25-31
    • /
    • 2010
  • Anchor, soil nail, micropile have been widely used for slope reinforcement and foundation. These all methods need grouting work after placing reinforcing member. In domestic case, gravity fill techniques and pressure grouting techniques are mainly used. In contrast the pressure re-injection grouting method is not commonly used because grouting equipment and lack of practical application example is short and the verification of reinforcing effect is difficult. Pressure re-injection grouting is a kind of post grouting which technique increases the radial stresses acting on the grout body and causes irregular surface to be developed around bond length that tends to interlock the grout and the ground. In this study, the field test was performed to evaluate the reinforcing effect with the variation of grouting methods and pullout characteristics of reinforcing member placed by pressure re-injection grouting method. The test results showed that the post-grouting methods were useful to increase the pullout capacity.