• Title/Summary/Keyword: ground strain

Search Result 484, Processing Time 0.03 seconds

Analysis of Loading Translation Behavior for Drilled Shafts Modeling Pile through Lateral Loading Test (현장타설 모형말뚝의 수평재하시험을 통한 하중전이 거동 분석)

  • Park, Jun-Beom;Kim, Hong-Lark;Yoon, Myung-June;Heo, Seong-Jun;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1011-1016
    • /
    • 2009
  • In this study, to performed laboratory model tests in order to verify on load transfer condition of drilled shaft under lateral loading. To conducted model test on polystyle drilled shaft under multi layer ground conditions. In model test, to measured the strain of drilled shaft and displacement under later loading. In order to verify on model test results, to conduct the numerical analysis.

  • PDF

The Analysis of Tunnel Behavior using Different Constitutive Models (다양한 구성방정식에 따른 터널 거동해석)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.73-81
    • /
    • 2010
  • The paper presents the application of FE simulations of NATM tunnel using different constitutive models. The results from a series of two dimensional plane strain finite element analyses of medium-liner interaction for NATM are presented. Four types of constitutive models are considered, namely, linear elastic, elasto-plastic Mohr-Coulomb, Hardening-Soil, Soft-Soil model. The design for tunnels requires a proper estimate of surface settlement and lining forces. It is shown that the advanced constitutive model gives better predictions for both ground movement and structural forces.

Arrival direction effects of travelling waves on nonlinear seismic response of arch dams

  • Akkose, Mehmet
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.179-199
    • /
    • 2016
  • The aim of this study is to investigate arrival direction effects of travelling waves on non-linear seismic response of arch dams. It is evident that the seismic waves may reach on the dam site from any direction. Therefore, this study considers the seismic waves arrive to the dam site with different angles, ${\theta}=0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and $90^{\circ}$ for non-linear analysis of arch dam-water-foundation interaction system. The N-S, E-W and vertical component of the Erzincan earthquake, on March 13, 1992, is used as the ground motion. Dam-water-foundation interaction is defined by Lagrangian approach in which a step-by-step integration technique is employed. The stress-strain behavior of the dam concrete is idealized using three-dimensional Drucker-Prager model based on associated flow rule assumption. The program NONSAP is employed in response calculations. The time-history of crest displacements and stresses of the dam are presented. The results obtained from non-linear analyses are compared with that of linear analyses.

Investigation of the liquefaction potential of fiber-reinforced sand

  • Sonmezer, Yetis Bulent
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.503-513
    • /
    • 2019
  • In the present, the liquefaction potential of fiber-reinforced sandy soils was investigated through the energy-based approach by conducting a series of strain-controlled cyclic simple shear tests. In the tests, the effects of the fiber properties, such as the fiber content, fiber length, relative density and effective stress, and the test parameters on sandy soil improvement were investigated. The results indicated that the fiber inclusion yields to higher cumulative liquefaction energy values compared to the unreinforced (plain) ground by increasing the number of cycles and shear strength needed for the liquefaction of the soil. This result reveals that the fiber inclusion increases the resistance of the soil to liquefaction. However, the increase in the fiber content was determined to be more effective on the test results compared to the fiber length. Furthermore, the increase in the relative density of the soil increases the efficiency of the fibers on soil strengthening.

Tractor Performance Instrumentation System

  • Wan Ismail, Wan Ishak;Yahya, Azmi;Bardaie, Mohd. Zohadie
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.569-581
    • /
    • 1996
  • A microcomputer -based data acquistion system was designed and developed at Michigan State University , USA to conduct field data studies. The system designed for the research carried out used an Apple IIe microcomputer for collecting data on-board the tractor. An AII3 Analog to Digital (A/D_ convertor was chosen to interface each analog signal to the microcomputer. A commercially available Dj TPM II was employed to display information such as an engine speed, ground speed, percent drive wheel slip , distance travelled and area covered per hour. The frequency output from the radar unit was channeled through a frequency to voltage (F/V) convertor , so that AII3 Analog to Digital (A/D) convertor could read it. The fuel consumption was measured using on EMCO pdp-1 fuel flow meter attached to the engine fuel line. The draft of the tillage and other drag equipment was determined using strain gages attached to the drawbar of the tractor. The system was developed to collect the draft and fuel requirements for various farm equipment different kind of soils.

  • PDF

Distribution of Calcaneal Bone Density According to the Mechanical Strain of Exercise and Calcium Intake in Premenarcheal Girls (초경전 여아에서 운동의 기계적 스트레인과 칼슘섭취량에 따른 발꿈치뼈 골밀도의 분포)

  • Shin, Eun-Kyung;Kim, Ki-Suk;Kim, Hee-Young;Lee, In-Sook;Joung, Hyo-Jee;Cho, Sung-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.3
    • /
    • pp.291-297
    • /
    • 2005
  • Objectives : The effects of exercise on bone density have been found to be inconsistent in previous studies. We conducted a cross-sectional study in premenarcheal girls to test two hypotheses to explain these inconsistencies. Firstly,'the intensity of mechanical strain, in terms of the ground reaction force(GRF), has more important effects on the bone mass at a weight-bearing site', and secondly, 'calcium intake modifies the bone response to exercise'. Methods : The areal bone mineral density was measured at the Os calcis, using peripheral dual energy X-ray absorptiometry, in 91 premenarcheal girls aged between 9 and 12 years. The intensity of mechanical strain of exercise was assessed by a self-report questionnaire and scored by the GRF as multiples of body weight, irrespective of the frequency and duration of exercise. The energy and calcium intake were calculated from the 24-hour dietary recall. An analysis of covariance(ANCOVA) was used to determine the interaction and main effects of exercise and calcium on the bone density, after adjusting for age, weight, height and energy intake. Results : The difference in the bone density between moderate and low impact exercise was more pronounced in the high than low calcium intake group. The bone density for moderate impact exercise and high calcium intake was significantly higher than that for low impact exercise (p=0.046) and low calcium intake, after adjusting for age, weight, height and energy intake. Conclusions : Our study suggests that the bone density at a weight-bearing site is positively related to the intensity of mechanical loading exercise, and the calcium intake may modify the bone response to exercise at the loaded site in premenarcheal girls.

State of the Art of the Cyclic Plasticity Models of Structural Steel (구조용 강재의 반복소성모델 분석 연구)

  • Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.735-746
    • /
    • 2002
  • The task of plastic theory is twofold: first, to set up relationships between stress and strain that adequately describe the observed plastic deformation of metals, and second, to develop techniques for using these relationships in studying of the mechanics of metal forming processes, and the anlaysis and design of structures. One of the major problems in the theory of plasticity is to describe the behavior of work-hardening materials in the plastic range for complex loading histories. This can be achieved by formulating constitutive laws either in the integral or differential forms. To adequately predict the response of steel members during cyclic loading, the hardening rule must account for the features of cyclic stress-strain behavior. Neithe of the basic isotropic and kinematic hardening rules is suitable for describing cyclic streess-strain behavior, although a kinematic hardening rule describes the nearly linear portions of the stabilized hystersis loops. There is also a limited expansion of the yield surface as predicted by the isotropic hardening rule. Strong ground motions or wind gusts affect the complex and nonproportional loading histories in the inelastic behavior of structues rather than the proportional loading. Nonproportional loading is defined as externally applied forces on the structure, with variable ratios during the entire loading history. This also includes the rate of time-dependency of the loads. For nonproportional loading histories, unloading may take place along a chord instead of the radius of the load surface. In such cases, the shape of the stress-strain curve has to be determined experimentally for all non-radial loading conditions. The plasticity models including two surface models ae surveyed based on a yield surface and a bound surface that represent a state of maximum stress. This paper is concerned with the improvement of a plasticity models of the two-surface type for structural steel. This is follwed by an overview of plasticity models on structural steel. Finally the need for further research is identified.

Consolidation Characteristics & Consolidation Period of Dredged Soil by Considering Change of Strain and Stratum Thickness (변형률과 층 두께의 변화를 고려한 준설점토의 압밀특성과 압밀기간)

  • Cheong Gyu-Hyang;Kim Young-Nam;Ju Jae-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.105-114
    • /
    • 2004
  • Consolidation characteristics have been investigated by using Rowe cell consolidation tester for dredged soil, which is more than two times as much as the liquid limit. To examine the effects of variation of water content on consolidation characteristic, tests were carried out varying the initial water content from $100\%\;to\;150\%.$ The results were compared with the consolidation characteristics of remolded clay. The test results showed that the hither the initial water content of dredged clay was, the more noticeable the non-linear behavior of e-log P curves occurred. The variation of the gradient was apparent to load stage 40kPa and became less apparent after load stage 80kPa on the e-log P curves. Ratio of compression index stayed within the range suggested by Mesri and variation of initial water content has hardly influenced the coefficient of consolidation. On the contrary, it was found that the magnitude of consolidation load affects the vertical coefficient of consolidation. The variation of stratum thickness during consolidation processing needs to be taken into consideration since hydraulic fill would go through a much larger scale strain than land soil when it is subject to a load. In this study, the consolidation period considering the variation of stratum thickness was analyzed and the results were compared with those of existing consolidation studies which did not consider the variation of stratum thickness. According to the results of the study, the consolidation period of the ground with a larger strain was calculated more close to observed value in case of Mikasa theory which takes the variation of stratum thickness into consideration.

An analysis of problems and countermeasures in the installation of plastic greenhouse on reclaimed lands (간척지에 플라스틱 온실 설치 시의 문제점 분석 및 개선방안)

  • Yu, In-Ho;Ku, Yang-Gyu;Cho, Myeong-Whan;Ryu, Hee-Ryong;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • Upon setting up a dedicated plastic greenhouse for tomato cultivation developed by the Rural Development Administration on the Gyehwa reclaimed land, this study was aimed at analyzing the problems can be occurred in the installation of plastic greenhouse on reclaimed lands as well as finding out solutions for improvement. A relatively cheaper wooden pile was used in the installation in order to supplement the soft ground conditions. Based on the results of ground investigation of the installation site, both the allowable bearing capacity and pulling resistance of the wooden pile with a diameter of 150 mm and a length of 10 m were computed and came out to be 30.645 kN. It was determined that the values were enough to withstand the maximum compressive force (17.206 kN) and the pullout force (20.435 kN) that are generally applied to the greenhouse footing. There are three problems aroused in the process of greenhouse installation, and the corresponding countermeasures are as follow. First, due to the slightly bent shape of the wooden pile, there were phenomenon such as deviation, torsion, and fracture when driving the pile. This could be prevented by the use of the backhoe (0.2) rotating tongs, which are holding the pile, to drive the pile while pushing to the direction of the driving and fixing it until 5 m below ground and applying a soft vibrating pressure until the first 2 m. Second, there exists a concrete independent footing between the column of the greenhouse and the wooden pile driven to the underground water level. Since it is difficult to accurately drive the pile on this independent footing, the problem of footing baseplate used to fix the column being off the independent footing was occurred. In order to handle with this matter, the diameter of the independent footing was changed from 200 mm to 300 mm. Last, after films were covered in the condition that the reinforcing frame and bracing are not installed, there was a phenomenon of columns being pushed away by the strong wind to the maximum of $11m{\cdot}s^{-1}$. It is encouraged to avoid constructions in winter, and the film covering jobs always to be done after the frame construction is completely over. The height of the independent footing was measured for 9 months after the completion of the greenhouse installation, and it was found to be within the margin of error meaning that there was no subsidence. The extent to the framework distortion and the value of inclinometers as well showed not much alteration. In other words, the wooden pile was designed to have a sufficient bearing capacity.

Evaluation of Constitutive Relationships and Consolidation Coefficients for Prediction of Consolidation Characteristics of Dredged and Reclaimed Ground (준설매립지반의 압밀거동 예측을 위한 구성관계식 산정 및 압밀정수 평가)

  • Jun, Sanghyun;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.31-41
    • /
    • 2008
  • Consolidation characteristics of reclamated ground with dredged soil and methods of evaluating them are investigated in this paper. For a dredged and reclamated ground with a very high water content, self-weight consolidation being progressed, its consolidation characteristics are difficult to find since it is almost impossible to have a undisturbed sample. In order to overcome such a problem, methods of laboratory tests with disturbed sample were studied to obtain consolidation parameters required to analyze consolidation settlement in practices, using the conventional infinitesimal consolidation theory, were evaluated by carrying out various laboratory tests with disturbed soils such as oedometer test, constant rate of deformation test, Rowe-cell tests with ring diameters of 60 mm, 100 mm and 150 mm and the centrifuge model tests with 40 g-levels. Constitutive relations of void ratio - effective vertical stress - permeability were evaluated by using the inverse technique implemented with the finite strain consolidation theory and results of centrifuge model tests. Design soil parameters related to consolidation such as compression index, swelling index, coefficient of volume change and vertical and horizontal consolidation coefficients were proposed properly by analyzing the various test results comprehensively.

  • PDF