• 제목/요약/키워드: ground response

검색결과 1,769건 처리시간 0.03초

Parameters affecting the seismic response of buildings under bi-directional excitation

  • Fontara, Ioanna-Kleoniki M.;Kostinakis, Konstantinos G.;Manoukas, Grigorios E.;Athanatopoulou, Asimina M.
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.957-979
    • /
    • 2015
  • The present paper investigates the influence of the orientation of the ground-motion reference axes, the seismic incident angle and the seismic intensity level on the inelastic response of asymmetric reinforced concrete buildings. A single storey asymmetric building is analyzed by nonlinear dynamic analyses under twenty bi-directional ground motions. The analyses are performed for many angles of incidence and four seismic intensity levels. Moreover three different pairs of the horizontal accelerograms corresponding to the input seismic motion are considered: a) the recorded accelerograms, b) the corresponding uncorrelated accelerograms, and c) the completely correlated accelerograms. The nonlinear response is evaluated by the overall structural damage index. The results of this study demonstrate that the inelastic seismic response depends on the orientation of the ground-motion reference axes, since the three individual pairs of accelerograms corresponding to the same ground motion (recorded, uncorrelated and completely correlated) can cause different structural damage level for the same incident angle. Furthermore, the use of the recorded accelerograms as seismic input does not always lead to the critical case of study. It is also shown that there is not a particular seismic incident angle or range of angles that leads to the maximum values of damage index regardless of the seismic intensity level or the ground-motion reference axes.

지반응답해석기법의 차이에 의한 지반응답 분산도 평가 (Influence of Analysis Models on Variation of Ground Response during Earthquake)

  • 김성렬;최재순;김수일;박대영;박성용;김기풍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.317-333
    • /
    • 2007
  • The Round-Robin Test (RRT) for ground response analysis was performed by Division of Geotechnical Earthquake Engineering of Korean Geotechnical Society. This research analyzed the influence of analysis methods on variation of ground response by using the results of this RRT. The analysis methods include equivalent linear analysis, non-linear analysis and effective stress analysis. A total of 5 teams among 12 teams applied two kinds of analysis methods. This research compared the results of these 5 teams and analyzed the variation of the results according to analysis methods. The compared results were shear stress-shear strain relation, transfer function, time history and the response spectrum of ground surface acceleration, peak ground acceleration, peak shear strain and maximum excess pore pressure ratio.

  • PDF

부지 고유의 지반 거동평가 (Evaluation of Site Specific Ground Response)

  • 김동수;이진선;윤종구
    • 한국지진공학회논문집
    • /
    • 제3권4호
    • /
    • pp.1-10
    • /
    • 1999
  • 지진 시 지반의 자유장 운동은 국지적 지반조건에 의하여 크게 영향을 받으며 내진설계에 앞서 지반조건을 고려한 부지응답특성평가를 수행하여야 한다. 본 논문은 부지고유의 지반거동 평가를 위하여 필요한 절차를 국내 내진기준과 외국의 기술현황 조사를 바탕으로 제안하였다. 부지응답특성 평가의 개요를 설명하고 1차원 등가선형 해석에 필요한 지반자료 획득을 위한 지반조사계획 기반조사기법, 저변형율 및 고변형율 영역에서의 지반의 변형거동특성, 현장 및 실내시험결과를 이용한 부지특성평가방법들을 제안하였다 또한 제안된 절차를 따라 수행된 인천 지역의 부지특성평가방법들을 제안하였다 또한 제안된 절차를 따라 수행된 인천 지역의 부지응답특성평가 예를 포함하였다.

  • PDF

목표스펙트럼의 평균과 분산을 고려한 지반운동 선정과 배율조정계수 결정방법 (An Accurate and Efficient Method for Selecting and Scaling Ground Motions Considering Target Response Spectrum Mean and Variance)

  • 하성진;박미영;한상환
    • 한국지진공학회논문집
    • /
    • 제20권5호
    • /
    • pp.331-340
    • /
    • 2016
  • It is important to select proper ground motions for obtaining accurate results from response history analyses. The purpose of this study is to propose an accurate and efficient method that does not require excessive computation for selecting and scaling ground motions to match target response spectrum mean and variance. The proposed method is conceptually simple and straightforward, and it does not use a simulation algorithm that requires a sophisticated subroutine program. In this method, the desired number of ground motions are sequentially scaled and selected from a ground motion library. The proposed method gives the best selection results using Sum of Square Error and has the smallest value(=0.14). Also, The accuracy and consistency of the proposed method are verified by comparing the selection results of the proposed method with those of existing methods.

모래지반에서 터널 굴착조건들을 반영한 상부 블록구조물의 거동변화 분석 (Analysis of Response Change of Structure due to Tunnel Excavation Conditions in Sand Ground)

  • 손무락
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1541-1549
    • /
    • 2013
  • 본 연구는 모래지반에서 터널의 굴착조건(터널깊이 및 터널직경)과 시공조건(지반손실량), 지반조건(조밀한 모래, 느슨한 모래)을 변화시키면서 터널상부에 위치한 구조물의 거동변화를 조사 및 분석한 것이다. 분석에 사용된 구조물은 4층 블록식구조물로서 변형 등에 의한 균열발생과 균열폭의 차이로 인해 구조물의 손상정도를 쉽게 파악할 수 있는 특징이 있다. 다양한 터널 굴착조건 및 시공조건, 지반조건에 대해서 발생할 수 있는 터널상부 블록구조물의 거동상태를 파악하기 위해 수치해석적 매개변수 해석을 수행하였으며, 수치해석은 구조물의 실제크랙 발생을 묘사할 수 있도록 개별요소법(DEM)에 근거하여 수행하였다. 다양한 매개변수 해석으로부터 얻어진 구조물의 거동상태에 대한 결과는 터널 굴착조건 및 시공조건, 지반조건과 상호연관하여 함께 반영될 수 있도록 도표화 하였으며, 이를 이용하여 향후 모래지반에서 다양한 터널굴착 및 시공조건, 지반조건으로 인해 유발되는 터널 상부구조물의 손상정도를 보다 용이하게 파악할 수 있을 것으로 기대된다.

Simple Parametric Analysis of the Response of Buried Pipelines to Micro-Tunneling-Induced Ground Settlements

  • Son, Moorak
    • 한국지반환경공학회 논문집
    • /
    • 제15권11호
    • /
    • pp.29-42
    • /
    • 2014
  • This paper investigates the effects of micro-tunneling on buried pipelines parametrically. A simplified numerical approach was developed and various parametric studies have been conducted to evaluate the effects of ground settlements on the response of buried pipelines. The controlled parameters included the pipe stiffness, ground loss magnitude, and pipe location with respect to a micro-tunnel. Maximum settlement and curvature along a pipeline have been investigated and compared among others for different conditions. In addition, the numerical results have been compared with a theoretical method by Attewell et al. (1986), which is based on a Winkler type linear-elastic solution. The comparison indicated that the response of buried pipes to micro-tunneling-induced ground settlements highly depends on the soil-pipe interaction including the separation and slippage of pipe from soil with the effects of the investigated parameters. Therefore, rather than using the theoretical method directly, it would be a better assessment of the response of buried pipelines to consider the soil-pipe interaction in more realistic conditions.

내진설계를 위한 응답스펙트럼 연구 (Characteristics of Response Spectrum using Observed Ground Motion from the Recent Earthquakes)

  • 김준경
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 1999년도 춘계 공동학술발표회
    • /
    • pp.116-119
    • /
    • 1999
  • Amplification factor spectrum, using the observed strong ground motions database in the Korean Peninsula, has been obtained and compared with Standard Response Spectrum, which was suggested by United States Nuclear Regulatory Committee. The observed und motions from the Yongwol and the Kyoungju, and the other recent Earthquakes, respectively, which ate supposed to represent domestic seismotectonic characteristics such as seismic source, attenuation of the propagation medium, and site specific effect, are used for the analysis of amplification factor spectrum. The database are slightly different from the those of the second study. Amplification factors hue been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal na vertical ground motions. The comparison have shown that the amplification factors resultant from this study exceeds these of Standard Response Spectrum, The results suggest that the characteristics of seismic strong ground motion, which are supposed to represent the domestic seismotectonic characteristics, differs from those of Standard Response Spectrum, especially at higher frequencies. The results from the 2nd study are similar to those of 1st analysis.

  • PDF

Probabilistic study of the influence of ground motion variables on response spectra

  • Yazdani, Azad;Takada, Tsuyoshi
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.877-893
    • /
    • 2011
  • Response spectra of earthquake ground motions are important in the earthquake-resistant design and reliability analysis of structures. The formulation of the response spectrum in the frequency domain efficiently computes and evaluates the stochastic response spectrum. The frequency information of the excitation can be described using different functional forms. The shapes of the calculated response spectra of the excitation show strong magnitude and site dependency, but weak distance dependency. In this paper, to compare the effect of the earthquake ground motion variables, the contribution of these sources of variability to the response spectrum's uncertainty is calculated by using a stochastic analysis. The analytical results show that earthquake source factors and soil condition variables are the main sources of uncertainty in the response spectra, while path variables, such as distance, anelastic attenuation and upper crust attenuation, have relatively little effect. The presented formulation of dynamic structural response in frequency domain based only on the frequency information of the excitation can provide an important basis for the structural analysis in some location that lacks strong motion records.

상이한 지반조건을 갖는 아치구조물의 지진응답 분석 (Seismic Response of Arch Structure Subjected to Different Ground Motion)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.113-119
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response of spatial structure for seismic design of spatial structure. An arch structure is used as an example structure because it has primary characteristics of spatial structures. Multiple support excitation may be subjected to supports of a spatial structure because ground condition of spatial structures is different. In this study, the response analysis of the arch structure under multiple support excitation and simple support excitation is studied. By means of the pseudo excitation method, the seismic response is analyzed for long span spatial structure. It shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic response of spatial structure under multiple support excitation and simple support excitation are the different in some case. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation because the spatial structure supports may be different.

Shaking table tests on the seismic response of slopes to near-fault ground motion

  • Zhu, Chongqiang;Cheng, Hualin;Bao, Yangjuan;Chen, Zhiyi;Huang, Yu
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.133-143
    • /
    • 2022
  • The catastrophic earthquake-induced failure of slopes concentrically distributed at near-fault area, which indicated the special features of near-fault ground motions, i.e. horizontal pulse-like motion and large vertical component, should have great effect on these geo-disasters. We performed shaking table tests to investigate the effect of both horizontal pulse-like motion and vertical component on dynamic response of slope. Both unidirectional (i.e., horizontal or vertical motions) and bidirectional (i.e., horizontal and vertical components) motions are applied to soft rock slope model, and acceleration at different locations is reordered. The results show that the horizontal acceleration amplification factor (AAF) increases with height. Moreover, the horizontal AAF under unidirectional horizontal pulse-like excitations is larger than that subject to ordinary motion. The vertical AAF does not show an elevation amplification effect. The seismic response of slope under different bidirectional excitations is also different: (1) The horizontal AAF is roughly constant under horizontal pulse-like excitations with and without vertical waves, but (2) the horizontal AAF under ordinary bidirectional ground motions is larger than that under unidirectional ordinary motion. Above phenomena indicate that vertical component has limited effect on seismic response when the horizontal component is pulse-like ground motion, but it can greatly enhance seismic response of slope under ordinary horizontal motion. Moreover, the vertical AAF is enhanced by horizontal motion in both horizontal pulse-like and ordinary motion. Thence, we should pay enough attention to vertical ground motion, especially its horizontal component is ordinary ground motion.