• 제목/요약/키워드: ground response

검색결과 1,780건 처리시간 0.027초

Fukuoka 연속 지진의 관측자료를 이용한 수평 응답스펙트럼 특성 분석 (Analysis of Characteristics of Horizontal Response Spectrum of Ground Motions from Fukuoka Earthquakes Series)

  • 김준경
    • 터널과지하공간
    • /
    • 제24권5호
    • /
    • pp.354-365
    • /
    • 2014
  • 2005년 3월 20일 규모 6.5의 후쿠오카 본진이 발생하였고 이후 발생한 규모 3.7 이상의 15 개 중규모 후쿠오카 지진으로부터 관측된 지반진동 파형을 이용하여 수평 응답스펙트럼을 분석하였다. 결과를 국내 원자력 관련 구조물의 내진설계 기준과 국내 일반 구조물 및 건축물 내진설계기준과 각각 비교하였다. 수평성분 178개 지반진동을 이용하여 고유진동수별 지반응답을 구하고 최대 지반 가속도 값을 이용하여 정규화 분석을 수행하였다. 연구결과는 응답값에 대한 진앙거리 의존성이 대단히 크다는 것을 보여주었다. 또한 국내 원자력시설물의 내진기준인 Regulatory Guide 1.60과 비교한 결과는 일부 구간 즉 약 8 ~ 10 Hz 구간과 약 16 ~ 20 Hz의 2개의 구간에서 표준편차를 더한 값이 Regulatory Guide 1.60 보다 약간 초과함을 보여 주었다. 또한 국내 일반 구조물 및 건축물 내진설계 응답스펙트럼을 3 개 지반조건에 적용한 결과는 거의 모든 주기 대역에서 분석된 응답스펙트럼이 SE 지반조건의 설계 응답스펙트럼(500년 재래주기, 지진구역 1, SE 지반조건)을 초과하고 있다. 500년 재래주기는 가장 약한 내진 설계기준에 해당하기 때문에 거의 모든 주기 대역에서 본 연구로부터 분석된 응답스펙트럼이 해당 기준을 초과하고 있다. 신뢰성을 보다 증가시키기 위해 향후 한반도 및 한반도 주변 해외 발생지진으로부터 관측된 지진자료를 대폭적으로 보강하여 관측 지진자료의 다양성을 유지하는 것이 필요하다.

Ductility inverse-mapping method for SDOF systems including passive dampers for varying input level of ground motion

  • Kim, Hyeong-Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제3권1호
    • /
    • pp.59-81
    • /
    • 2012
  • A ductility inverse-mapping method for SDOF systems including passive dampers is proposed which enables one to find the maximum acceleration of ground motion for the prescribed maximum response deformation. In the conventional capacity spectrum method, the maximum response deformation is computed through iterative procedures for the prescribed maximum acceleration of ground motion. This is because the equivalent linear model for response evaluation is described in terms of unknown maximum deformation. While successive calculations are needed, no numerically unstable iterative procedure is required in the proposed method. This ductility inverse-mapping method is applied to an SDOF model of bilinear hysteresis. The SDOF models without and with passive dampers (viscous, viscoelastic and hysteretic dampers) are taken into account to investigate the effectiveness of passive dampers for seismic retrofitting of building structures. Since the maximum response deformation is the principal parameter and specified sequentially, the proposed ductility inverse-mapping method is suitable for the implementation of the performance-based design.

지반응답해석 Round Robin Test 결과 종합적 분석 연구 (Comprehensive Evaluation of Results of Ground Response analysis Round Robin Test)

  • 박두희;윤종구;박영호;안창윤;김재연
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.334-344
    • /
    • 2007
  • This paper performed a comprehensive evaluation of the results of the 2007 Ground Response Analysis Round Robin Test, at which 14 institutions and individuals participated. The submitted results showed significant discrepancies. The main reason for this difference has been attributed to the dispersion in the estimated shear wave velocity profiles and dynamic soil curves. It is therefore concluded that accurate evaluation of the material properties is of primary importance for reliable estimation of the ground vibration. Evaluation of the effect of the analysis method showed that the equivalent linear analysis overestimates the peak ground acceleration, but overall the results are similar to a total stress nonlinear analysis. However, the total and effective stress nonlinear analyses show distinct discrepancies, the effective stress analyses consistently resulting in a lower response due to the development of the excess pore water pressure and thus softer response.

  • PDF

정압관리소의 지전계측기 설치를 위한 지반특성 분석 (Ground Response Analysis of the Cmpressor Station for Installation of Seismic Instrument)

  • 권기준;김용길
    • 한국안전학회지
    • /
    • 제17권1호
    • /
    • pp.79-86
    • /
    • 2002
  • In the case of earthquake, it is necessary to install earthquake instruments and to measure the ground motions for stable gas supply and restoration in case of supply suspension. Because each point in the site of the gas facilities has different characteristics of ground motion, it is recommended to measure at the point where the ground motion is representative. In this paper, ground motion analysis and noise pattern analysis are carried out to select suitable point for the installation of earthquake instruments and to set of dynamic range of sensors.

대형 봉상 접지전극의 접지임피던스와 주파수 응답특성 (Ground Impedance and Frequency Response Characteristics of Large-scale Ground Rods)

  • 이복희;엄주홍;김태두;정동철;길형준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1791-1793
    • /
    • 2003
  • In order to analyze the dynamic characteristics of ground impedance in large grounding system for lightning and surge protections, a novel method for measuring the ground impedance as a function of frequency was proposed. The experiments were carried out in the grounding system composed of ground rods and mesh grids. The test current was injected by the variable frequency inverter whose frequency is linearly controlled in the range of $5{\sim}500$kHz. The ground impedance and frequency response of the grounding system were mainly caused by the inductive current flowing through grounding conductors over the frequency of 2002. In the combined grounding system of rods and mesh grids, inductive component of ground impedance was significantly decreased. It was fumed out that the grounding system is effective for the surge protection.

  • PDF

터널 설계를 위한 지반응답곡선 (A Study on Ground Response Curve for Tunnel Design)

  • 이송;안성학;안태훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.181-190
    • /
    • 2003
  • 수렴-제한법은 수학적 모델 및 지반응답곡선을 통하여 터널안정조건을 평가하는 방법이다. 본 연구에서는 수치적 모델에 의하여 수렴-제한법을 검토하였다. 이 방법은 수학적 모델을 위한 기본가정이 필요 없고, 일반 형태의 터널에 적용할 수 있다. 본 연구결과에 따르면 2차원 수치해석에서 사용되는 숏크리트 강성변화 및 하중분담율은 중요한 요소가 아니며, 지반응답곡선과 지보반응곡선은 상호의존적인 것으로 나타났다. 터널구조는 지반과 지보의 상호작용에 의하여 분석되어야 한다. 그러므로 합리적인 터널설계를 위해서 터널의 안정성은 지반응답곡선에 의한 정성적 판단과 수치해석에 의한 정량적 검토가 필요하다.

차량하중에 의한 주변지반의 진동해석 (Dynamic analysis Ground using 2-D FEM)

  • 황성춘;강보순;심형섭;오병헌;박성진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.642-647
    • /
    • 2001
  • Dynamic response of ground due to train loads is analyzed. A numerical procedure based on finite element method is used to solve two-dimensional ground response. Dynamic train loads assumed in analysis is the point acceleration on train rail with magnitude of 2330 gal and thickness of surface of soil layer assumed is 60cm. In order to consider the effect of acceleration point, dynamic responses such as response acceleration and displacement are computed as a function of distance from acceleration point on rail. In addition, simple methods which reduce dynamic effects on ground are also proposed.

  • PDF

Effects of ground motion scaling on nonlinear higher mode building response

  • Wood, R.L.;Hutchinson, T.C.
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.869-887
    • /
    • 2012
  • Ground motion scaling techniques are actively debated in the earthquake engineering community. Considerations such as what amplitude, over what period range and to what target spectrum are amongst the questions of practical importance. In this paper, the effect of various ground motion scaling approaches are explored using three reinforced concrete prototypical building models of 8, 12 and 20 stories designed to respond nonlinearly under a design level earthquake event in the seismically active Southern California region. Twenty-one recorded earthquake motions are selected using a probabilistic seismic hazard analysis and subsequently scaled using four different strategies. These motions are subsequently compared to spectrally compatible motions. The nonlinear response of a planar frameidealized building is evaluated in terms of plasticity distribution, floor level acceleration and uncorrelated acceleration amplification ratio distributions; and interstory drift distributions. The most pronounced response variability observed in association with the scaling method is the extent of higher mode participation in the nonlinear demands.

A study on the topographical and geotechnical effects in 2-D soil-structure interaction analysis under ground motion

  • Duzgun, Oguz Akin;Budak, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.829-845
    • /
    • 2011
  • This paper evaluates the effects of topographical and geotechnical irregularities on the dynamic response of the 2-D soil-structure systems under ground motion by coupling finite and infinite elements. A numerical procedure is employed, and a parametric study is carried out for single-faced slope topographies. It is concluded that topographic conditions may have important effects on the ground motion along the slope. The geotechnical properties of the soil will also have significantly amplified effects on the whole system motion, which cannot be neglected for design purposes. So, dynamic response of a soil-structure systems are primarily affected by surface shapes and geotechnical properties of the soil. Location of the structure is another parameter affecting the whole system response.

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • 제7권2호
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.