• Title/Summary/Keyword: ground movements

Search Result 215, Processing Time 0.024 seconds

Investigation on Interaction between Tunneling and Groundwater (터널시공과 지하수의 상호작용 고찰)

  • Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.415-424
    • /
    • 2004
  • This paper presents the effect of groundwater on tunneling performance. The interaction between the tunneling and groundwater was examined using a 3D stress-pore pressure coupled finite-element analysis, The results of the 3D coupled analysis were then compared with those of a total stress analysis. Examined items included pore pressures around lining and lining forces. Also examined include face displacements and ground surface movements, The results indicated that the interaction between the tunneling and ground water significantly increases the lining forces and ground deformations, and that the effect of ground water on tunneling can only be captured through a fully coupled analysis, Implementations of the findings from this study arc discussed in great detail.

  • PDF

Three-Dimensional Finite Element Analysis on Tunnel Behaivor Reinforced by Umbrella Arch Method (3차원 유한요소해석에 의한 Umbrella Arch 공법으로 보강된 터널의 거동 해석)

  • 유충식;신승우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.211-216
    • /
    • 1995
  • In recent years, Natm has been successfully applied to difficult ground conditions with the use of soil-perservention methods which promote face stability and restrict excessive ground movement. When the tunnle excavation od made through difficult ground like highly weathered rock, the umbrella arch method is often adopted which pre-reinforceas tunnel crown periphery using a stiff shell-shaped structure. The umbrella arch method was originally developed in Itali, and has recently been confirmed its effectiveness in Korea as well. However, no in depth study on the umbrella arch method has been conducted ans as a result no rational analysis/design method is available at present. Therefore this study was undertaken with the aim of identifying the basic reinforcing mechanism and satablishing both qualitative and quantiative relationships between various design parameters and ground movements.

  • PDF

The Effects of Chair Height and Foot Condition on the Biomechanical Factors in Sit-to-Stand Movement of Hemiplegic Patients (편마비 환자의 앉은 자세에서 일어서기 동작 시 의자 높이와 발의 조건이 생체역학적 요소에 미치는 영향)

  • Kim, Dong-hoon;Kim, Tack-hoon;Choi, Houng-sik;Roh, Jung-suk;Choi, Kyu-hwan;Kim, Ki-song
    • Physical Therapy Korea
    • /
    • v.25 no.2
    • /
    • pp.1-12
    • /
    • 2018
  • Background: It is very difficult for hemiplegic patients to effectively perform the sit-to-stand (STS) movements independently because of several factors. Moreover, the analysis of STS motion in hemiplegic patients has been thus far confined to only muscle strength evaluation with little information available on structural and environmental factors of varying chair height and foot conditions. Objects: This study aimed to analyze the change in biomechanical factors (ground reaction force, center of mass displacement, and the angle and moment of joints) of the joints in the lower extremities with varying chair height and foot conditions in hemiplegic patients while they performed the STS movements. Methods: Nine hemiplegic patients voluntarily participated in this study. Their STS movements was analyzed in a total of nine sessions (one set of three consecutive sessions) with varying chair height and foot conditions. The biomechanical factors of the joints in the lower extremities were measured during the movements. Ground reaction force was measured using a force plate; and the other abovementioned parameters were measured using an infra-red camera. Two-way repeated analysis of variance was performed to determine the changes in biomechanical factors in the lower extremities with varying chair height and foot conditions. Results: No interaction was found between chair height and foot conditions (p>.05). All measured variables with varying chair height showed a significant difference (p<.05). Maximum joint flexion angle, maximum joint moment, and the displacement of the center of mass in foot conditions showed a significant difference (p<.05); however the maximum ground reaction force did not show a significant difference (p>.05). Conclusion: The findings suggest that hemiplegic patients can more stably and efficiently perform the STS movement with increased chair height and while they are bare-foot.

Evaluation of Horizontal Force on Pile Shaft Surrounded by Vertical PET Aggregate Layer for Fluid Machinery Structure Installation in Cold Region's Plant (동토 플랜트 유체기계 구조물 설치를 위한 PET 골재적용 말뚝의 주면작용 수평력 평가)

  • Ji, Subin;Jang, Sung Min;Hwang, Soon Gap;Lee, Kicheol;Kim, Dongwook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.43-47
    • /
    • 2016
  • Pile foundations constructed on extremely cold regions cause serviceability problems of superstructures from repeated actions of ground freezing and thawing. Oil sand module plants are mainly constructed on seasonal frozen ground. Due to the freezing and thawing actions of grounds, vertical movements of piles have been observed. To solve these erratic pile movement problems, thin vertical layer of PET aggregates is installed around the pile shaft to prevent potential unfavorable pile movements. There is no known method to calculate "thin PET aggregate layer" -surrounded pile shaft resistance (capacity) against vertical loads; therefore, this experimental research is conducted. Specifically, in this study, horizontal (normal) pressures on pile shaft were assessed varying PET aggregate layer thickness based on the experiment.

Comparative Study of the Biomechanical Factors in Range of Motion, Muscle Activity, and Vertical Ground Reaction Force between a Forward Lunge and Backward Lunge

  • Park, Samho;Huang, TianZong;Song, Junyoung;Lee, Myungmo
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • Objective: The purpose of this study was to examined the kinematic relationship and differences through the range of motion (ROM), muscle activity, and vertical ground reaction force (VGRF) during forward and backward lunge movements, which are effective in improving muscle strength and balance ability of the lower extremities, and to provide clinical information on more efficient lunge movements. Design: Cross-sectional study Methods: Fifteen adult males who met the selection criteria were tested for their dominant feet.Forward and backward lunges were then performed, and the ROM, muscle activity, and VGRF were measured for kinematic analysis during the lunge movement.The differences betweenthe forward lunge and backward lunge intervention were examined using a paired t-test. Results: A significant increase in the ROM of the knee and ankle was observed during the forward and backward lunges (p<0.05). In addition, in terms of the muscle activity, the peak values of the vastus medialis oblique (VMO) and VGRF also showed a significant increase in the forward lunge compared to the backward lunge (p<0.05). Conclusions: This study showed an increase in VGRF peak value, knee and ankle ROM, and VMO muscle activity during forward lunge. Based on these results, it is considered necessary to apply differently depending on the direction of progress in consideration of the musculoskeletal situation and physical ability during the lunge movement.

Proposal of Equations related to Settlement and Lateral Movement According to Embankment on Marine Sedimentary Ground (해성퇴적지반에서 성토로 인한 침하량과 측방유동량 산정식 제안)

  • Kim, Kyeong-Su;Chung, Dae-Seouk;Lee, Jong-Gil
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.191-202
    • /
    • 2010
  • In this study, the relationship between the settlements and the horizontal displacements according to embankment was analyzed at the marine sedimentary grounds for preparation of a site, and then the empirical equations of both the settlement and the horizontal displacement considering the embankment load and the thickness were proposed. To do this, the field and laboratory tests were performed at the improvement section where the pre-loading method was applied, and the field monitoring was performed using various sensors. Based on the results of the tests and monitoring, the ground deposits, soil characteristics and engineering properties were analyzed and the settlements and lateral movements were estimated by the Regression analysis. The ground deposits from the ground surface were composed of reclaimed soils, sedimentary soils and based rocks. The thickness of clay in the sedimentary soils layer was ranged from 3.9 m to 44.5 m. The embankment heights to improve the ground during pre-loading were constructed from 4.7 m to 7.8 m in each section. The settlements during embankment were ranged from 0.959 m to 2.217 m and the lateral movements were ranged from 0.048 m to 0.313 m. As the result of regression analysis, the equations of settlements and horizontal displacements according to embankments may be proposed as $s=0.02h^2+0.11h$ and ${\delta}=0.01e^{0.37h}$, respectively. The proposed empirical equations of the settlements and the horizontal displacements according to embankment on the marine sedimentary ground may be applied to the site where has a similar condition of study area.

Prediction and Field Measurement on Behaviour of Soft Clay during Deep Excavation (연약점성토지반에서의 깊은굴착에 따른 지반거동의 예측과 현장계측)

  • 정성교;조기영;정은용
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.111-124
    • /
    • 1999
  • When deep excavation adjacent to an existing structure is performed, it is very important to minimize damage on the structure through the prediction of ground movement. In this paper, finite element analysis was performed to predict the ground movement, based on the data from site investigation and laboratory tests, when deep excavation close to a buried water tank was carried out in soft clay ground. The movement and stabilities of the soil-cement wall(SCW) and the adjacent structure were checked using the results of the analysis and the field measurement. The comparison between the measured and the predicted ground movements showed the significance of the excavation procedure and lowering of water level in the analytical model. In the future, it is needed to improve the prediction method for better estimation of the ground movement.

  • PDF

Quantitative Analysis of the Swimming Movements of Flatfish Reacting to the Ground Gear of Bottom Trawls

  • Kim, Yong-Hae;Wardle Clem S.
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.4
    • /
    • pp.167-174
    • /
    • 2006
  • Two typical responses have been documented for flatfish when they encounter the ground gear of bottom trawls: herding response and falling back response. These two responses were analyzed from video recordings of fish and were characterized by time sequences for four parameters: swimming speed, angular velocity, acceleration, and distance between the fish and the ground gear. When flatfish displayed the falling-back response, absolute values of the three swimming parameters and their deviations were significantly higher than those during the herding response. However, the swimming parameters were not dependent on the distance between the flatfish and the ground gear, regardless of which response occurred. The dominant periods for most of the movement parameters ranged from 2.0 to 3.7 s, except that no periodicity was observed for swimming speed or angular velocity during the falling-back response. However, variations in the four parameters during the falling -back response revealed greater irregularity in periodicity and higher amplitudes. This complex behavior is best described as a chaos phenomenon' and is discussed as the building block for a model predicting the responses of flatfish to ground gear as part of the general understanding of the fish capture process.

A simple model for ground surface settlement induced by braced excavation subjected to a significant groundwater drawdown

  • Zhang, Runhong;Zhang, Wengang;Goh, A.T.C.;Hou, Zhongjie;Wang, Wei
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.635-642
    • /
    • 2018
  • Braced excavation systems are commonly required to ensure stability in construction of basements for shopping malls, underground transportation and other habitation facilities. For excavations in deposits of soft clays or residual soils, stiff retaining wall systems such as diaphragm walls are commonly adopted to restrain the ground movements and wall deflections in order to prevent damage to surrounding buildings and utilities. The ground surface settlement behind the excavation is closely associated with the magnitude of basal heave and the wall deflections and is also greatly influenced by the possible groundwater drawdown caused by potential wall leakage, flow from beneath the wall, flow from perched water and along the wall interface or poor panel connections due to the less satisfactory quality. This paper numerically investigates the influences of excavation geometries, the system stiffness, the soil properties and the groundwater drawdown on ground surface settlement and develops a simplified maximum surface settlement Logarithm Regression model for the maximum ground surface settlement estimation. The settlements estimated by this model compare favorably with a number of published and instrumented records.

Response Analysis of Ground Vibration for Cutting and Embankment Transition Zone Structure (절성토 접속구조별 지반진동 응답특성)

  • Lee, Il-Wha;Yun, Won-Min;Choi, Won-Il;Hwang, In-Hwan;Hwang, Sung-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3195-3200
    • /
    • 2011
  • The vibration resulting from railway operation is transmitted through the track and line structure, ground movements to adjacent buildings. As these vibration is growing, there is occurred exaggerated forces and displacements of the track and line structure and it is causing the differential settlement. It is difficult to clarify the dynamic response characteristics of trackbed because of various environmental conditions. However, track irregularity be affected by ununiformed bearing capacity and its dynamic response, study for dynamic response characteristics is required to investigate the cause of track irregularity and countermeasure. This study was intended to evaluate the numerical analysis which exam the response analysis characteristic of ground vibration by shape of cutting and embankment transition zone. The original method of analysis were have to examine variables such as directions, angles, drain conditions, linear conditions. However, In the analysis there were to consider the effect of moving loads according to directions of cutting and embankment transition zone.

  • PDF