• Title/Summary/Keyword: ground loop

Search Result 258, Processing Time 0.025 seconds

CPS를 위한 모델 기반 자율 컴퓨팅 프레임워크 (Model-based Autonomic Computing Framework for Cyber-Physical Systems)

  • 강성주;전인걸;박정민;김원태
    • 대한임베디드공학회논문지
    • /
    • 제7권5호
    • /
    • pp.267-275
    • /
    • 2012
  • In this paper, we present the model-based autonomic computing framework for a cyber-physical system which provides a self-management and a self-adaptation characteristics. A development process using this framework consists of two phases: a design phase in which a developer models faults, normal status constrains, and goals of the CPS, and an operational phase in which an autonomic computing engine operates monitor-analysis-plan-execute(MAPE) cycle for managed resources of the CPS. We design a hierachical architecture for autonomic computing engines and adopt the Model Reference Adaptive Control(MRAC) as a basic feedback loop model to separate goals and resource management. According to the GroundVehicle example, we demonstrate the effectiveness of the framework.

정전류 철도 부하를 이용한 교류 전기 철도 급전 시스템 해석 (Analysis for Autotransformer-Fed AC Electric Railroad System Using Constant Current Mode)

  • 이승혁;정현수;김진오
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.329-334
    • /
    • 2001
  • This paper presents exact autotransformer-fed AC electric railroad system modeling using constant current mode. The theory is based on the solution of algebraic. The proposed modeling is considered the line self-impedances and mutual-impedances. Besides, the load modeling improved results are obtained as application to the proposed constant current mode. In the analysis on AT-fed AC electric railroad system circuit, a generalized analysis method using the loop equation on a case by case. the simulation objectives are to calculate the catenary and rail voltages with respect to ground, as the train moves along a section of line between two adjacent ATs. The model contains assumptions regarding the representation of the autotransformer, the impedance of the track/catenary system, and the grounding arrangements, which all effect the accuracy of the result. The modeling results seem very reasonable. It is established that techniques for the AC electric railroad system modeling and analysis.

  • PDF

모니터링 및 시뮬레이션을 통한 SCW형 지열 시스템의 성능인자 분석에 관한 연구 (Study on the performance analysis of SCW geothermal system by simulation and monitoring)

  • 이상준;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권2호
    • /
    • pp.8-15
    • /
    • 2013
  • Recently, an interest in the use of renewable energy has been growing up due to the rise of raw material price, international oil price and depletion of fossil energy. Ground source heat pump system has a high efficiency by using the constant temperature of underground and various types of the systems have been installed and utilized in the building. there are few studies on the system performance factors in the SCW system. Furthermore, even though the performance of the system depends on the temperature of heat source, the research on their relationship is rare. In this research, in order to analyze the performance factor for the open-loop system the monitoring of the real building with the standing column well systems and the simulation with building model were conducted.

정밀 연삭가공을 위한 제어시스템 설계 (Control System Design for Precision Grinding)

  • 오창진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.453-458
    • /
    • 2000
  • Design of an in-process feedback control system has been studied for precision grinding. A grinding system consists of a grinding tool, a turn table and a disk-shaped workpiece on the table is taken as an object. A grinding process model has been deduced which gives some reasoning about the process errors. In the control system the tool position is actively controlled by an electro-magnetic actuator in-process. The ground error is feedback to compose a closed-loop control system and an optimal PID controller is applied. Some control performances such as transient response and disturbance such as transient response and disturbance attenuation have been examined, which convinces the effectiveness of the control. Some methods for implementation of the control. Some methods for implementation of the control have been suggested from a standpoint of practical application.

  • PDF

HYBRID ROLL CONTROL USING ELECTRIC ARC SYSTEM CONSIDERING LIMITED BANDWIDTH OF ACTUATING MODULE

  • Kim, H.J.;Lee, C.R.
    • International Journal of Automotive Technology
    • /
    • 제3권3호
    • /
    • pp.123-128
    • /
    • 2002
  • This paper presents the design of an active roll control system for a ground vehicle and an experimental study using an devised electric-actuating roll control system. Based on a three degree of freedom linear vehicle model, the controller is designed using lateral acceleration and rollrate feedback. In order to investigate the feasibility of an active control system, experimental work is carried out using a hardware-in-the-loop (Hil) setup which has been constructed by the devised electric-actuating system and the full vehicle model including tire characteristics. The performance is evaluated by an experiment using the Hil setup with limited bandwidth. Finally, in order to enhance the control performance in the transient region, a hybrid control strategy is proposed and evaluated.

개방형 지열 시스템 설계법 개발을 위한 관정 주위 지중 온도 환경 검토 (Study on the Underground Thermal Environment around Wells for a Design Method of Open-Loop Geothermal System)

  • 배상무;김홍교;김현우;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.14-20
    • /
    • 2017
  • Groundwater heat pump (GWHP) system can achieve higher performance of the system by utilizing heat source of the annual constant groundwater temperature. The performance of GWHP system depends on the ground thermal environment such as groundwater temperature, groundwater flow rate and hydraulic conductivity. In this study, the geothermal environment was analyzed by using numerical simulation for develop the two-well geothermal system. As the result, this paper shows the change of the groundwater level and underground temperature around wells according to the conditions of flow rate and hydraulic conductivity.

지중 순환수 유량 변화에 따른 지열원 히트펌프 시스템의 성능 특성 연구 (Influence of the Secondary Fluid Flow Rate on the Performance of a GSHP System)

  • 이준엽;정진택;우정선;최종민
    • 설비공학논문집
    • /
    • 제22권10호
    • /
    • pp.649-656
    • /
    • 2010
  • The aim of this study is to investigate the influence of the secondary fluid flow rate through GLHX on a GSHP system with vertical single U-tube type GLHXs. The COP of a GSHP system with large flow rate was lower than it with small flow rate due to large power consumption of ground loop circulating pump. It is suggested that the heat pump unit with high COP and low flow rate through the GLHX have to be selected in order to enhance the performance of the system and reduce the length of GLHX.

면진주파수가 원통형탱크의 구조응답에 미치는 영향 (Effects of Seismic Isolated Frequency in Structural Responses of Cylindrical Tanks)

  • 구경회;이재한;유봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.258-265
    • /
    • 1995
  • For design of seismic isolated system the determination of isolated frequency is very important. In this paper the effects of seismic isolated frequency for cylindrical tank are investigated using the 1940 EL Centre earthquake(NS). From the results of analysis the seismic isolated frequencies significantly depend on input acceleration and displacement components in lower frequency regions. Therefore, the seismic isolated frequency should be determined by consideration of input ground motion characteristics. For the seismic analysis the modified hysteretic hi-linear model of seismic isolators which can consider the yield load variation, shape of hysterisis loop variation and hardening effects of isolators is proposed. The analyses using the proposed model give similar displacement responses but higher maximum acceleration responses than those using the simple hysteretic hi-linear model.

  • PDF

소규모 주택에 대한 수평형 지열 히트펌프 형태 결정에 관한 연구 (A Study on the description of Horizontal Geothermal Heat pump Type on Small Residential House)

  • 윤장렬;조성우;최정민
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.328-332
    • /
    • 2011
  • The conclusion is derived from the arranged results and using a simulation by determining the shape of an optimum heat pump which is appropriate for small scale houses. It is concluded as 3 meters long for the laying depth of underground piping of the horizontal type geothermal heat pump system in regard to the 5 RT capacity standard that is suitable for a small scale house. The shape of the horizontal type geothermal heat pump system for a small scale house is theThree pipe shape whose trench length is short and pipe length laid in a trench is short. It is 9 for the number of laying pipes that is most appropriate to system.

  • PDF

Photonic Bandgap 구조를 이용한 저 위상잡음 듀얼밴드 VCO에 관한 연구 (Low-Phase Noise Dual-band VCO Using PBG Structure)

  • 조용기;서철헌
    • 대한전자공학회논문지TC
    • /
    • 제41권2호
    • /
    • pp.53-58
    • /
    • 2004
  • 본 논문에서는 부성저항을 갖는 발진부의 귀환 경로에 PIN 다이오드를 이용한 스위칭 회로를 추가하여 저 위상잡음 듀얼밴드 전압제어 발진기를 구현하였다. PIN 다이오드에 전원이 인가되지 않았을 때는 5㎓ 대역에서 발진이 일어나고, 인가되었을 때는 1.8㎓ 대역에서 발진이 일어난다. VCO의 위상잡음을 향상시키기 위하여 공진기에 PBG(Photonic Bandgap)구조를 접지 면에 적용하였다. 5.25㎓에서 출력 전력은 -9.17㏈m, 위상잡음은 -102㏈c/㎐이고, 1.8㎓에서 출력 전력은 -5.17㏈m, 위상잡음은 -101㏈c/㎐이다.