• Title/Summary/Keyword: ground loop

Search Result 258, Processing Time 0.026 seconds

Stabilization Control of line of sight of OTM(On-The-Move) Antenna (OTM 단말기 안테나 시선 안정화 제어)

  • Kang, Min-Sig;Cho, Yong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2073-2082
    • /
    • 2010
  • The 4-th generation of mobile communication aims to realize global, fast and mobile communication service. The satellite communication charges a key role in this field. In this study, an OTM(On-The-Move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite was addressed. Since vehicles move during communication, active antenna line-of-sight stabilization is a core technology to guarantee high satellite communication quality. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. Various disturbance torques such as static and dynamic mass imbalance torques, variation of moment of inertia according to elevation angle, friction torque related to vehicle motion, equivalent disturbance torque due to antenna roll motion, etc. were analyzed. As a robust stabilization control, rate feedback with sliding mode control and position feedback with proportional+integral control was suggested. To compensate antenna roll motion, a supplementary roll rate feed forward control was included beside of the feedback control loop. The feasibility of the analysis and the proposed control design were verified along with some simulation results.

Design of Antenna Tracking Software for MSC(Multi-Spectral Camera) Antenna Control

  • Kim, Young-Sun;Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper shows the desist concept of an ATS(Antenna Tracking Software) to control the movement of the MSC(Multi-Spectral Camera) antenna. The MSC has a two-axes directional X-band antenna for image transmission to KGS(KOMSAT2 Ground Station). The main objective of the ATS is to drive the APM(Antenna Pointing Mechanism) to the required elevation and the azimuth position according to an appropriate TPF(Tracking Parameter File). The ATS is implemented as one task of the SBC(Single Board Computer) software, which uses VxWorks as a real time OS. The ATS has several operational modes such as STANDBY mode, First EL mode, First AZ mode, Normal Operation mode, and so on. The ATS uses two PI controllers fur the velocity and the position loop respectively, to satisfy the requirements specification. In order to show the feasibility of the described design concept, the various simulations and the experiments are performed under specific test configuration.

  • PDF

A Development of Micro-Positioning Grinding Table using Piezoelectric Voltage Feedback (압전전압 궤환에 의한 미세구동 연삭테이블의 개발)

  • Nam, Soo-Ryong;Kim, Jeong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.48-58
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool, optical device, measurement systen. In order ro keep a high precision displacement resolution, they use a position sensor and feedback the error. From the practical point of view, a high-resolution displacement sensor system are very expensive and difficult to guarantee such sensitive sensors work properly in the hard opera- tion environment of industry. In this study, a micro-positioning grinding table which does not require position sensor but uses piezoelectric voltage feedback, has been developed. It is driven by hystersis-considering reference input voltage which calculated from computer and then uses actuator/sensor characteristics of piezoelectric materials. From the result of experiments we proved a fast and stable response of micro-positioning system and suggested efficient technique to control the piezoelectric actuator. And through grinding experiments, it is revealed that a characteristics of ground surfaces transient to plastic deformation as extremely small depth of grinding.

  • PDF

Development of Unmanned Aerial Vehicle System Integration Laboratory(UAV SIL) for the Integrated Verification (무인항공기 체계의 통합검증을 위한 무인항공기 체계통합실험실(UAV SIL) 개발)

  • Jae Ick Shim;Hee Chae Woo;Sang Jin Kim;Sang Jun Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.70-79
    • /
    • 2024
  • This paper describes the results of the development of the the unmanned aerial vehicle system integration laboratory(UAV SIL) for the integrated verification. This UAV SIL is designed to test the robustness of the UAV system including the operational logics and the flight control system behaviors under many abnormal and emergency conditions such as data-link losses, airborne subsystem failures, engine shut down conditions, and ground control station faults. This paper presents how to build the UAV SIL and how to verify the in-development UAV system through the UAV SIL.

Performance Evaluation of Robotic Physics Engine for Mobile Manipulator Simulation (모바일 매니퓰레이터 시뮬레이션을 위한 로봇 물리 엔진의 성능 평가)

  • Kwanwoo Lee;Junheon Yoon;Suhan Park;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • A mobile manipulator is capable of handling a wide range of workspaces by overcoming the limitations of mobility inherent in existing fixed-base manipulators. To simulate the mobile manipulator, two contact operations should be considered in the physics engines. One of these operations is the grasp stability between the gripper and the object, while the other involves the contact between the wheels of the mobile robot and the ground during driving. However, it is still difficult to choose an appropriate physics engine for simulating these contact operations of the mobile manipulator. In this paper, the performance of physics engines for simulating the mobile manipulator is evaluated. Firstly, the grasp stability of the physics engine is quantitatively evaluated based on the contact force discontinuity. Secondly, when the mobile robot is controlled by open or closed-loop control methods, differences in the path taken by the mobile robot depending on the physics engine are analyzed. To assess the performance of robot simulation, three dynamic simulators-MuJoCo, CoppeliaSim, and IsaacSim-are used along with five physics engines: MuJoCo, Newton, ODE, Bullet, and PhysX.

A Textile Analysis of Woolen Carpet Excavated from Seongjeonggak Hall, in Changdeokgung Palace (창덕궁 성정각 출토 모담(毛毯) 직물 분석)

  • Pak, Seonghee;Lee, Ryangmi;An, Boyeon;Cho, Misook
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.120-134
    • /
    • 2021
  • A Woolen carpet from the late Joseon Dynasty was unearthed in the process of repairing Seongjeonggak in Changdeokgung. Since relics are rarer than documentary records, the woolen carpet is highly valued as a relics. It is presumed to have been woven in the late 19th or early 20th century because there is a record of repairing Seongjeonggak in 1907. In the carpet, a pattern is made by inserting colored yarn dyed yellow and red onto a reddish-purple ground weave. The selvage of the woolen carpet used cotton thread, and jute is used for the warp and weft of the ground weave. The colored patterns is made of wool in the form of loop pile. Cut piles may appear occasionally when the colored yarn changes, but are almost invisible from the surface because they are pressed tightly with a shuttered weft. Making carpets with jute and wool is thought to be influenced by the Brussels carpets of the mid-18th century. Furthermore, the woolen carpet is torn and the pattern is completely unclear; however, it is understandable that the pattern is partially repeated. Microscopic and Fourier transform-Infrared spectrometer(FT-IR) analyses were performed for the above investigation. To identify the dyes used in relics, we compared them with natural dyed fabric samples based on chromaticity measurements and Ultraviolet/Visible spectrophotometer(UV-Vis) analysis. These analyses revealed that the woolen carpet's dyed green yarn did not use indigo, and reddish-purple ground weave is estimated to have used Caesalpinia sappan.

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.

Formation of Au Particles in Cu2-xICu2IIO3-δ (x ≈ 0.20; δ ≈ 0.10) Oxide Matrix by Sol-Gel Growth

  • Das, Bidhu Bhusan;Palanisamy, Kuppan;venugopal, Potu;Sandeep, Eesam;Kumar, Karrothu Varun
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • Formation of Au particles in nonstoichiometric $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxide from aniline + hydrochloric acid mixtures and chloroauric acid in the ratios 30 : 1; 60 : 1; 90 : 1 (S1-S3) by volume and 0.01 mol of copper acetate, $Cu(OCOCH_3)_2.H_2O$, in each case is performed by sol-gel growth. Powder x-ray diffraction (XRD) results show Au particles are dispersed in tetragonal nonstoichiometric dicopper (I) dicopper (II) oxides, $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$). Average crystallite sizes of Au particles determined using Scherrer equation are found to be in the approximate ranges ${\sim}85-140{\AA}$, ${\sim}85-150{\AA}$ and ${\sim}80-150{\AA}$ in S1-S3, respectively which indicate the formation of Au nano-micro size particles in $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Hysteresis behaviour at 300 K having low loop areas and magnetic susceptibility values ${\sim}5.835{\times}10^{-6}-9.889{\times}10^{-6}emu/gG$ in S1-S3 show weakly ferromagnetic nature of the samples. Broad and isotropic electron paramagnetic resonance (EPR) lineshapes of S1-S4 at 300, 77 and 8 K having $g_{iso}$-values ${\sim}2.053{\pm}0.008-2.304{\pm}0.008$ show rapid spin-lattice relaxation process in magnetic $Cu^{2+}$ ($3d^9$) sites as well as delocalized electrons in Au ($6s^1$) nano-micro size particles in the $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Broad and weak UV-Vis diffuse reflectance optical absorption band ~725 nm is assigned to $^2B_{1g}{\rightarrow}^2A_{1g}$ transitions, and the weak band ~470 nm is due to $^2B_{1g}{\rightarrow}^2E_g$ transitions from the ground state $^2B_{1g}$(${\mid}d_{x^2-y^2}$>) of $Cu^{2+}$ ($3d^9$) ions in octahedral coordination having tetragonal distortion.

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.