• Title/Summary/Keyword: ground loop

Search Result 258, Processing Time 0.025 seconds

Comparative Evaluation of Loop-Mediated Isothermal Amplification (LAMP) and Conventional PCR for Detection of Shiga-Toxin-Producing Escherichia coli (STEC) in Various Food Products

  • Hyejin Jang;Yong Sun Cho
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.347-355
    • /
    • 2023
  • In this study, polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) were compared in terms of their ability to detect shiga-toxin-producing Escherichia coli (STEC). Various foods were artificially inoculated with STEC to evaluate the limit of detection (LOD), limit of quantification (LOQ), sensitivity, specificity, and efficiency of PCR and LAMP. The LODs were ≤104 and ≤103 CFU/mL for PCR and LAMP, respectively. The LOQs did not differ between PCR and LAMP. However, of the four considered food types, the sensitivities differed by a maximum of 11.1% for seasoned meat and by a minimum of 8.1% for ground beef. LAMP had higher sensitivity than that of PCR and 100% specificity for all four food types. Therefore, LAMP is a reliable molecular method for detecting STEC as comparable to PCR assay, and its specificity and sensitivity are superior to those of PCR, depending on the food type.

The Development of The Simulation Environment for Operating a Simultaneous Man/Unmanned Aerial Vehicle Teaming (유/무인 항공기 복합운용체계 검증을 위한 시뮬레이션 환경 구축)

  • Gang, Byeong Gyu;Park, Minsu;Choi, Eunju
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.36-42
    • /
    • 2019
  • This research illustrates how the simulation environment for operating the simultaneous man/unmanned aerial vehicle teaming is constructed. X-Plane program, HILS for the ducted fan aircraft (unmanned) and CTLS (manned aircraft) with communication devices are interfaced to simulate the basic co-operational flight. The X-plane and HILS can allow operators to experience the maned and unmanned aircraft operation in the airspace on the ground in turn they can perform various simulated missions in advance before the actual flight. For the test purpose, the data link between man/unmanned aircraft and ground control station is examined using C Band and UHF radio channels by the manned aircraft.

Study on physical characteristic of Graphite-added grout for backfilling cloed-loop groud heat exchanger (흑연(Graphite) 첨가를 통한 수직 밀폐형 지중열교환기 뒤채움재의 열전도 특성 향상 연구)

  • Lee, Kang-Ja;Gil, Hu-Jeong;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Pum
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.579-582
    • /
    • 2009
  • The thermal conductivity and viscosity(or workability) of graphite-added bentonite grouts and cementitious grouts have been evaluated and compared to determine the suitability of these materials for backfilling vertical boreholes of ground heat exchangers. Seven bentonite grouts from different product sources and a portland cement grout with various mixture ratios were considered in this paper. As a new additive for grout, we choose graphite which has high thermal conductivity. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or with an addition of Graphite compared with that of silica sand. In case of cementitious grout also increase the thermal conductivity and decrease the workability dramatically though an addition of Graphite. Therefore, we cautiously select the amount of graphite and mixture ratio of bentonite and cement considering not only thermal conductivity but also viscosity for the optimum condition of backfilling material.

  • PDF

Study on cement-based grout for closed-loop vertical ground heat exchanger (수직 밀폐형 지중 열교환기 뒤채움재로서 시멘트 그라우트의 적용성 검토)

  • Park, Moon-Seo;Wi, Ji-Hae;Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.615-624
    • /
    • 2010
  • In this paper, the applicability of cement grout has been studied as an alternative to bentontite grout to backfill ground heat exchangers. To provide an optimal mixture design, the groutabilty and thermal conductivity of cement grouts with various mixture ratios were experimentally evaluated and compared. The unconfined compression strength of cement grout specimen was measured, which are exposed to cyclic temperature variation ranging from $50^{\circ}C$ to $-5^{\circ}C$. In addition, the integrity of the interface between circulating HDPE pipes and cement grout by performing equivalent hydraulic conductivity tests, in which a pipe locates at the center of the specimen.

  • PDF

Evaluation of Thermal Conductivity for Grout/Soil Formation Using Thermal Response Test and Parameter Estimation Models (열응답 시험과 변수 평가 모델을 이용한 그라우트/토양 혼합층의 열전도도 산정)

  • Sohn Byong Hu;Shin Hyun Jun;An Hyung Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • The Performance of U-tube ground heat exchanger for geothermal heat Pump systems depends on the thermal properties of the soil, as well as grout or backfill materials in the borehole. In-situ tests provide a means of estimating some of these properties. In this study, in-situ thermal response tests were completed on two vertical boreholes, 130 m deep with 62 mm diameter high density polyethylene U-tubes. The tests were conducted by adding a monitored amount of heat to water over a $17\~18$ hour period for each vertical boreholes. By monitoring the water temperatures entering and exiting the loop and heat load, overall thermal conductivity values of grout/soil formation were determined. Two parameter estimation models for evaluation of thermal response test data were compared when applied on the same temperature response data. One model is based on line-source theory and the other is a numerical one-dimensional finite difference model. The average thermal conductivity deviation between measured data and these models is of the magnitude $1\%$ to $5\%$.

Design of the Compact Microstrip Bandpass Filter by using DGS Resonator (DGS 공진기를 이용한 소형 마이크로스트립 대역통과 필터의 설계)

  • Cho, Young-Bin;Jun, Kye-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.147-152
    • /
    • 2005
  • In this paper, we have proposed a novel DGS(Defected Ground Structure) resonator and has designed the band -pass filter using the proposed ${\subset}$ stub-I type DGS resonator. This structure has strong advantages that can vary the retune loss at the passband freely and also can easily tune the attenuation pole frequency at the stopband. The bandpass filter can be made more smaller than the existing filters and be used to find the various applications for eliminating the harmonics and spurious mode at IMT-2000 band.

A Study on An Integrated GEO/TES with Geothermal Heat Exchanger and Thermal Ice Storage (지중열 교환기와 빙축열조(Thermal Ice Storage)를 연계시킨 통합 지중열-빙축열조 시스템(Integrated GEO/TES))

  • Lohrenz ED.;Hahn Jeongsang;Han Hyuk Sang;Hahn Chan;Kim Hyoung Soo
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.717-729
    • /
    • 2005
  • Peak cooling load of large buildings is generally greater than their peak heating load. Internal and solar heat gains are used fur selection of adquate equipment in large building in cold winter climate like Canada and even Korea. The cost of geothermal heat exchanger to meet the cooling loads can increase the initial cost of ground source heat pump system to the extend less costly conventional system often chosen. Thermal ice storage system has been used for many years in Korea to reduce chiller capacity and shift Peak electrical time and demand. A distribution system designed to take advantage of heat extracted from the ice, and use of geothermal loop (geothermal heat exchanger) to heat as an alternate heat source and sink is well known to provide many benifits. The use of thermal energy storage (TES) reduces the heat pump capacity and peak cooling load needed in large building by as much as 40 to $60\%$ with less mechanical equipment and less space for mechanical room. Additionally TES can reduce the size and cost of the geothermal loop by 1/3 to 1/4 compared to ground coupled heat pump system that is designed to meet the peak heating and cooling load and also can eliminate difficuties of geothermal loop installation such as space requirements and thermal conditions of soil and rock at the urban area.

Optimum Pumping Rates of Ground-Water Heat Pump System Using Groundwater or Bank Infilterated Water (강변여과수와 천부 지하수를 이용하는 지하수 열펌프시스템의 적정유량)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Jeon, Jae-Soo;Kim, Hyong-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.833-841
    • /
    • 2007
  • The groundwater heat pump system(GWHP) is one of the most efficient ground source heat pump system(GSHP) which uses low grade and shallow geothermal energy for cooling and heating purpose. The GWHP system shall be designed properly based on peak block load performance and optimum pumping rate of groundwater comparable to ground coupled heat pump system(GCHP). The optimum pumping rate depends on groundwater temperature at a specific site, size of plate heat exchanger, and total head loss occurred by whole system comprising pumps and pipings. The required optimum flow rates of the system per RT are ranged from 3.8 to 9.8lpm being less than the typical building loop flow of 9.5 to 11.4lpm.

Analysis of Soil Thermal Conductivities, Borehole Thermal Resistances and Initial Soil Temperature with In-Situ Testing in South Korea (현지 측정에 의한 남한지역의 지중유효열전도도, 보어홀 전열저항 및 초기온도 분석)

  • Ro, Jeong-Geun;Yon, Kwangseok;Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.68-74
    • /
    • 2012
  • Investigation of the effective soil thermal conductivity($k$) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. The first step is measured for initial soil temperature. This is done by supplying a only pump power into a borehole heat exchanger. They need to supply into water unload heat power more than 30 minutes. In this study, the initial soil temperature was found to analysis $14.1{\sim}16.0^{\circ}C$,the ratio was 68.7% represented. In this case of $k$, was 2.1~3.0 $W/m{\cdot}k$, $R_b$ was 0.11~0.20 $m{\cdot}K/W$. In this work, it is also shown that the distribution of a soil thermal conductivity and borehole thermal resistance were on the influence of initial soil temperature. And soil thermal conductivity was related with factors of equation by linear least square method, borehole thermal resistance was on the influence of composite factors.

Dynamic Interaction of Single and Group Piles in Sloping Ground (경사지반에 설치된 단일말뚝과 무리말뚝의 동적 상호작용)

  • Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.5-15
    • /
    • 2020
  • Dynamic behavior of pile foundation is significantly influenced by the dynamic interaction between soil and pile. Especially, in the sloping ground, the soil-pile interaction becomes very complex due to different resistance according to loading direction, soil residual displacement and so on. In this study, dynamic centrifuge tests were performed on the piles in the sloping ground. The model structures consisted of a single pile and 2×2 group pile. The soil-pile interaction has been investigated considering various conditions such as slope, single and group piles, and amplitude of input motions. The phase differences between soil and pile displacement and dynamic p-y curves were evaluated. The analysis results showed that the pile behavior was largely influenced by the kinematic forces between soil and pile. In addition, the dynamic p-y curve showed the complex hysteresis loop due to the effect of slope, residual displacement, and kinematic forces.