• Title/Summary/Keyword: ground granulated blast furnace slag(GGBFS)

Search Result 94, Processing Time 0.022 seconds

A Study for Improving Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures (광물질 혼화재를 혼합한 수중불분리성 콘크리트의 물성 향상을 위한 연구)

  • 문한영;신국재;이창수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.409-419
    • /
    • 2002
  • Nowadays, antiwashout underwater concrete is widely used for constructing underwater concrete structures but they, especially placed in marine environment, can be easily attacked by chemical ions such as SO$\^$2-/$\_$4/ Cl$\^$-/ and Mg$\^$2+/, so the quality and capability of concrete structures go down. In this paper, to solve and improve those matters, flyash and GGBFS(ground granulated blast furnace slag) were used as partial replacements for ordinary portland cement. As results of experiments for fundamental properties of antiwashout underwater concrete containing 10, 20, 30% of flyash and 40, 50, 60 % of GGBFS respectively, setting time, air contents, suspended solids and pH value were satisfied with the "Standard Specification of Antiwashout Admixtures for Concrete" prescribed by KSCE, and also slump flow, efflux time and elevation of head were more improved than that of control concrete. From the compressive strength test, it was revealed that the antiwashout underwater concrete containing mineral admixtures(flyash and GGBFS) is more effective for long term compressive strength than control concrete. An attempt to know how durable when they are under chemical attack has also been done by immersing in chemical solutions that were x2 artificial seawater, 5 % sulphuric acid solution, 10%, sodium sulfate solution and 10% calcium chloride solution. After immersion test for 91days, XRD analysis was carried out to investigate the reactants between cement hydrates and chemical ions and some crystalline such as gypsum ettringite and Fridel′s salt were confirmed.

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

Durability of self compacted concrete containing slag in hot climate

  • Yahiaoui, Walid;Kenai, Said;Menadi, Belkacem;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.271-288
    • /
    • 2017
  • This paper aims to investigate the effects of replacing cement with ground granulated blast furnace slag (GGBFS) in self compacting concrete in the fresh and hardened state. The performance of SCC in moderate climate is well investigated but few studies are available on the effect of hot environment. In this paper, the effect of initial water-curing period and curing conditions on the performance of SCC is reported. Cement was substituted by GGBFS by weight at two different levels of substitution (15% and 25%). Concrete specimens were stored either in a standard environment (T=$20^{\circ}C$, RH=100%) or in the open air in North Africa during the summer period (T=35 to $40^{\circ}C$; R.H=50 to 60%) after an initial humid curing period of 0, 3, 7 or 28 days. Compressive strength at 28 and 90 days, capillary absorption, sorptivity, water permeability, porosity and chloride ion penetration were investigated. The results show that the viscosity and yield stress are decreased with increasing dosage of GGBFS. The importance of humid curing in hot climates in particular when GGBFS is used is also proved. The substitution of cement by GGBFS improves SCC durability at long term. The best performances were observed in concrete specimens with 25% GGBFS and for 28 days water curing.

Effect of CBS-dust replacement rate on the Qualities of High Volume GGBFS Cement Bricks (CBS-dust 치환에 따른 고로슬래그 다량치환 시멘트 벽돌 품질에 미치는 영향)

  • Han, Jun-Hui;Han, Soo-Hwan;Kim, Su-Hoo;Yoon, Chi-Whan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.105-106
    • /
    • 2021
  • This study examines the performance of CBS-Dust for the utilization of cement bricks as alkali stimulants for furnace slag replacement binders. It converts the CBS-Dust substitution rate and the excess slag substitution rate. According to the analysis, when replacing CBS-Dust with 65~70 % of BS substitution rate and 7.5~10 % of CBS-Dust, it shows excellent performance as an alkali stimulant of BS' potential hydrophobic reaction, and it is expected to be effective for secondary products of BS replaced in large quantities.

  • PDF

Strength Development and Durability of High-Strength High-Volume GGBFS Concrete (고강도 고함량 고로슬래그 콘크리트의 강도 발현 특성 및 내구성)

  • Kim, Joo-Hyung;Jeong, Ji-Yong;Jang, Seung-Yup;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.261-267
    • /
    • 2015
  • To develop high-strength high-volume ground granulated blast-furnace slag (GGBFS) concrete, this study investigated the characteristics of strength development and durability of concrete with the water-to-binder ratio of 23% and the GGBFS replacement ratio of up to 65%. The results show that the compressive strength of GGBFS blended concrete is lower than that of ordinary Portland cement (OPC) concrete up to 3-day age, but the becomes higher after 7-day age. Together with strength increase, the pore structure becomes tighter, and thus the resistance to chloride ion penetration increases. Therefore, the GGBFS blended concrete has high resistance to freezing and thawing without additional air-entraining, and high resistance to carbonation despite low amount of calcium hydroxide ($Ca(OH)_2$). On the other hand, if silica fume (SF) is blended with GGBFS, the strength becomes lower than that of the concrete blended with GGBFS only, and the resistance to chloride ion penetration deceases. Therefore, it needs further studies on the reaction of SF in high-strength high-volume GGBFS concrete.

The Strength Characteristics of Activated Multi-Component Cement with Kaolinite (카올린을 혼합한 활성화된 다성분계 시멘트의 강도 특성)

  • Kim, Tae-Wan;Kim, Im-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.593-600
    • /
    • 2016
  • The paper presented investigates the effects of kaolinite on strength properties of alkali-activated multi-component cement. The binders of this study was blended of ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF) and kaolinite (KA). In this study, the specimens of combination of 20%~70% GGBFS, 10%~60% FA, 10% SF (constant ratio) and 10%~50% KA binder were used for strength properties tests. The water/binder ratio was 0.5. The binders (GGBFS + FA + SF + KA) was activated by sodium hydroxide (NaOH) and sodium silicate ($Na_2SiO_3$) was 10% by total binder weight (10% NaOH + 10% $Na_2SiO_3$). The research carried out is on the compressive strength, water absorption, ultrasonic pulse velocity (UPV) and X-ray diffraction (XRD). The compressive strength decreased as the contents of KA increase. One of the major reason for this is the low reactivity of KA compared with other raw materials used as precursors such as GGBFS or FA. The presence of remaining KA indicates that the initially used quantity has not fully reacted during hydration. Moreover, the results have indicated that increased of KA contents decreased UPV under all experimental conditions. The drying shrinkage and water absorption increased as the content of KA increase. Test result clearly showed that the strength development of multi-component blended cement were significantly dependent on the content of KA and GGBFS.

Effects of Replacement Ratio and Fineness of GGBFS on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Pastes (고강도 고로슬래그 혼합 시멘트 페이스트의 수화 및 포졸란 반응에 미치는 고로슬래그 미분말의 치환률과 분말도의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.115-125
    • /
    • 2015
  • This study investigated the fluidity, heat of hydration, setting time, strength development, and characteristics of hydration and pozzolanic reactions of high-strength high-volume ground granulated blast-furnace slag(GGBFS) blended cement pasts with the water-to-binder ratio of 20% by experiments, and analyzed the effects of the replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction. The results show that, in the high-strength mixtures with low water-to-binder ratio, the initial hydration is accelerated due to the "dilution effect" which means that the free water to react with cement increases by the replacement of cement by GGBFS, and thus, strengths at from 3 to 28 days were higher than those of plain mixtures with ordinary Portland cement only. Whereas it was found that the long term strength development is limited because the hydration reaction rates rapidly decreases with ages and the degree of pozzolanic reaction is lowered due to insufficient supply of calcium hydroxide according to large replacement of cement by GGBFS. Also, the GGBFS with higher fineness absorbs more free water, and thus it decreases the fluidity, the degree of hydration, and strength. These results are different with those of normal strength concrete, and therefore, should be verified for concrete mixtures. Also, to develop the high-strength concrete with high-volume of GGBFS, the future research to enhance the long-term strength development is needed.

Investigation of Physical Properties and Self Healing of Hardener-Free Epoxy-Modified Mortars with GGBFS (고로슬래그미분말을 혼입한 경화제 무첨가 에폭시수지 모르타르의 물리적 성질 및 자기치유 검토)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.80-87
    • /
    • 2020
  • The purpose of this study is to investigate the physical properties and self-healing effects of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS). The EMMs with GGBFS were prepared with various polymer-binder ratios and GGBFS contents, and tested for strengths, adhesion in tension, water permeation and self-healing effects. The conclusions obtained from the test results are summarized as follows. The compressive strength of the EMMs with GGBFS is reduced with increasing polymer-binder ratios because of reduction of the degree of hardening in the EMMs, and is somewhat inferior to that of unmodified mortars. In the flexural and tensile strengths, the flexural strength of the EMMs is almost constant with increasing polymer-binder ratios. However, the tensile strength of the EMMs is gradually increased with increasing polymer-binder ratios. Regardless of the GGBFS contents, the adhesion in tension of the EMMs increases sharply with increasing polymer-binder ratios. The water permeation of the EMMs is remarkably reduced with increasing polymer-binder ratios and GGBFS contents. The self-healing effect of the hardener-free EMMs with GGBFS is improved with increasing water immersion period at a GGBFS content of 20%.

Effect of different binders on cold-bonded artificial lightweight aggregate properties

  • Vali, Kolimi Shaiksha;Murugan, S. Bala
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.183-193
    • /
    • 2020
  • The present investigation is to identify an optimum mix combination amongst 28 different types of artificial lightweight aggregates by pelletization method with aggregate properties. Artificial aggregates with different combinations were manufactured from fly ash, cement, hydrated lime, ground granulated blast furnace slag (GGBFS), silica fume, metakaolin, sodium bentonite and calcium bentonite, at a standard 17 minutes pelletization time, with 28% of water content on a weight basis. Further, the artificial aggregates were air-dried for 24 hours, followed by hardening through the cold-bonding (water curing) process for 28 days and then testing with different physical and mechanical properties. The results found the lowest impact strength value of 16.5% with a cement-hydrated lime (FCH) mix combination. Moreover, the lowest water absorption of 16.5% and highest individual pellet crushing strength of 36.7 MPa for 12 mm aggregate with a hydrated lime-GGBFS (FHG) mix combination. The results, attained from different binder materials, could be helpful for manufacturing high strength artificial aggregates.

Influence of Iranian low-reactivity GGBFS on the properties of mortars and concretes by Taguchi method

  • Ramezanianpour, A.A.;Kazemian, A.;Radaei, E.;AzariJafari, H.;Moghaddam, M.A.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.423-436
    • /
    • 2014
  • Ground Granulated Blast Furnace Slag (GGBFS) is widely used as an effective partial cement replacement material. GGBFS inclusion has already been proven to improve several performance characteristics of concrete. GGBFS provides enhanced durability, including high resistance to chloride penetration and protection against alkali silica reaction. In this paper results of an experimental research work on influence of low-reactivity GGBFS (which is largely available in Iran) on the properties of mortars and concretes are reported. In the first stage, influence of GGBFS replacement level and fineness on the compressive strength of mortars was investigated using Taguchi method. The analysis of mean (ANOM) statistical approach was also adopted to develop the optimal conditions. Next, based on the obtained results, concrete mixtures were designed and water penetration, capillary absorption, surface resistivity, and compressive strength tests were carried out on highstrength concrete specimens at different ages up to 90 days. The results indicated that 7-day compressive strength is adversely affected by GGBFS inclusion, while the negative effect is less evident at later ages. Also, it was inferred that use of low-reactivity GGBFS (at moderate levels such as 20% and 30%) can enhance the impermeability of high-strength concrete since 28 days age.