• Title/Summary/Keyword: ground faults

Search Result 223, Processing Time 0.027 seconds

LVRT Control Strategy of Grid-connected Wind Power System (계통 연계형 풍력 발전 시스템의 LVRT 제어 전략)

  • Shin, Ho-Joon;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.182-190
    • /
    • 2011
  • This paper proposes a LVRT (Low Voltage Ride Through) control strategy which should be satisfied by grid-connected wind power system when grid faults occur. The LVRT regulation indicates rules or actions which have to be executed according to the voltage dip ratio and the fault duration. Especially the wind power system has to support the grid with specified reactive current to secure the grid stability when voltage reduction ratio is over 10%. The LVRT regulation in this paper is based on the German Grid Code and full-scale variable speed wind power conversion system is considered for LVRT control strategy. The proposed LVRT control strategy satisfies not only LVRT regulation but also makes power balance between wind turbine and power system through additional DC link voltage regulation algorithms. Because it is impossible to control grid side power when the 3-phase to ground fault occurs, the DC link voltage is controlled by a generator side inverter using the DC link voltage control strategy. Through the simulation and experiment result, the proposed LVRT control strategy is evaluated and its effectiveness is verified.

The Time Synchronization Signals of the GNSS Receiver for KSLV-II and Their Performance Assessment (한국형발사체 위성항법수신기의 시각동기신호 생성 및 성능 평가)

  • Kwon, Byung-Moon;Shin, Yong-Sul;Ma, Keun-Su;Yun, Kwang-Ho;Seo, Hung-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.812-820
    • /
    • 2019
  • The GNSS receiver for KSLV(Korea Space Launch Vehicle)-II provides real-time navigation data as well as precise time and time interval. The precise time signals provided by the GNSS receiver that can be used for the time synchronization between onboard systems, and between the onboard systems and ground stations have the forms of the 1PPS(One Pulse Per Second) and IRIG-B(Inter-Range Instrumentation Group Time Code B) which are synchronized with UTC(Coordinated Universal Time). A signal for timing faults also informs whether the time synchronization signals are available or not. This paper describes the time synchronization signals of the GNSS receiver for KSLV-II and their performance assessment.

A Study on the Induced Voltage Calculation Algorithm of AT power System (AT 급전방식의 유도전압계산 알고리즘에 관한 연구)

  • 손필영;김한성
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.903-913
    • /
    • 1988
  • Induced voltage causing disturbances on the communication lines of electric train is dealt with when the AT power supply system is employed. Induction interference is of three types, namely, normal state induced voltage, unusual induced voltage in case of power faults, and noise-induced voltage. Calculation of induced voltages occurring in the AT system is more complicated and extensive than in the BT system. In this paper we obtain an algorithm to calculate the induced voltages on the communication lines in the AT system and an algorithm for the induced current in case of the accident that the line falls to the ground. These algorithms are developed to a package of computer programs and their validity was checked on a simulated system. We supply the measures to protect the communication lines suitable for the AT system and we can also evaluate the protection capabilities. Because of the ability to evaluate the protection measures, this package is expected to be very useful when electric train system is constructed on communication lines near the railroad.

Cable Functional Failure Time Evaluation for a Main Control Room Fire using Fire Dynamic Simulator (FDS 이용한 주제어실 화재시 케이블 기능상실시간 평가)

  • Lim, Heok-Soon;Kim, In-Hwan;Kim, Myung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.79-85
    • /
    • 2016
  • Serious electrical problems, such as shorts, ground faults, or circuits, often cause fire events in the fire proof zone of nuclear power plants. These would be directed to the loss of safe shutdown capabilities performed by safety-related systems and equipment. The fire event can be treated with the basic design principle that safety systems should maintain their functions with redundancy and independency. In the case of a cable fire in the main control room, operators cannot perform their mission properly and can misjudge the situation because of spurious operation, incorrect indication or instrument. These would deteriorate the plant capabilities of safety shutdown and result in disastrous conditions. Therefore, during a main control room fire, 5 minutes of operator action time is very important to operate the safety shutdown components. This paper describes the cable functional failure temperature criteria and conducted a cable functional failure time evaluation using Fire Dynamic Simulator to obtain the operator action time for a main control room fire.

Effects of Grid Characteristics on High Speed Circuit Breaker for Railway Vehicle (철도 차량용 직류 고속도 차단기의 그리드 특성 해석)

  • Park, Ji-Won;Jung, Jooyoung;Choi, Jinnil
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.117-123
    • /
    • 2016
  • High speed circuit breakers(HSCB) interrupt the generated arc within the arc chute to turn off the electricity flowing through the main circuit to prevent ground faults. In order to explore the arc generated from the contactor operation, arc definition, establishment of arc interruption method, and analysis of magnetic driving force are required. In this paper, arc interruption capability has been estimated by exploring the difference in magnetic flux density of Lorenz forces using finite element analysis. In addition, since the number of grids and changes in the grid shape within the arc chute influence the formation of the inner magnetic field, its effects have been explored to enhance arc interruption capability. Assessment of interruption capability and analysis of grid shape, with rated operating current, are reported.

Design and testing of the KC-100 Spin Recovery Parachute System (SRPS)

  • Lee, Dong-Hun;Nho, Byung-Chan;Kang, Myung-Kag;Kang, Kyung-Woo;Lee, Ju-Ha;Kim, Su-Min;Kwon, Young-Suk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This paper presented the design of SRPS, ground function test, and the deployment test on a high speed taxi of KC-100 airplane. KAI has developed a spin recovery system in collaboration with Airborne Systems for KC-100 general aviation airplane. Spin mode analysis, rotary balance and forced oscillation tests were performed to obtain the rotational, dynamic derivatives in the preliminary design phase. Prior to the detailed design process of SRPS, approximations for initial estimation of design parameters- fineness ratio, parachute porosity, parachute canopy filling time, and deployment method- were considered. They were done based on the analytical disciplines such as aerodynamics, structures, and stability & control. SRPS consists of parachute, tractor rocket assembly for deployment, attach release mechanism (ARM) and cockpit control system. Before the installation of SRPS in KC-100 airplane, all the control functions of this system were demonstrated by using SBTB(System Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic devices that control the deployment and jettison of SRPS. Once confirmed normal operation of SRPS, deployment and jettison of parachute on the high speed taxiing were performed.

Inverter type High Efficency Neon Transformers for Neon Tubes (인버터식 고효율 네온관용 변압기)

  • 변재영;김윤호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.22-29
    • /
    • 2002
  • The conventional neon transformer systems are very bulky and heavy because it consist of leakage type transformers made of silicon steel plates. In addition, it has problems in noise by a neon transformer and in possibilities of fire and electrical shock when neon tubes are destroyed. A protection circuit is designed for all types of neon transformer loaded with one or more neon tubes. Whenever the neon tube fails to be started up, comes to the life end, encounters faults with open-circuits at the output terminals of the neon transformer, the protection circuit will be initiated to avoid more critical hazards. The input of the transformer is automatically cut off when the abnormal condition occurs, preventing waste of no-load power. To improve such problems, in this paper, a new type of neon power supply systems for neon tube is designed and implemented using inverter type circuits and a newly designed lightweight transformer. In the developed neon transformer system, a 60[Hz]power input is converted to 20[KHz]high frequency using half-wave inverters, thereby the transformer reduces its size by 1/5 in volume and 1/10 in weight.

Numerical Analysis on the Effect of Fractured Zone on the Displacement Behavior of Tunnel (파쇄대가 터널 주변 암반의 변형 거동에 미치는 영향에 대한 수치해석적 연구)

  • Kim Chang-Yong;Kim Kwang-Yeom;Moon Hyun-Koo;Lee Seung-Do;Baek Seung-Han
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.218-231
    • /
    • 2006
  • Anisotropic/heterogeneous rock mass shows various deformation behavior types due to tunnelling because deformation behavior is largely controlled by the spacial characteristics of geological factors such as faults, joints and fractured zone in rock mass. In this paper 2-dimensional numerical analysis on the several influencing factors is performed considering fractured zone located near tunnel. This numerical analysis shows that deformation behavior of tunnel are very different according to the width and the location of fractured zone and supper method. However, 3-dimensional analysis is necessary to consider 3-dimensional geometrical characteristics sufficiently since discontinuity and fractured zone have 3-dimensional geometry. Also flexible design/construction guidelines for tunnelling are required to cope with uncertain ground condition and circumstance for technically safe and economic tunnel construction.

Analysis of Return Current for Rolling Stock Operation on Electrical Railroads (전기철도 구간에서의 철도차량 운행에 따른 귀선전류 분석)

  • Baek, Jong-Hyen;Kim, Yong-Kyu;Oh, Seh-Chan;Jo, Hyun-Jeong;Lee, Kang-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4112-4118
    • /
    • 2011
  • Electrical Railroads provide electric power, which can operate vehicles, via feeder wires. And the supplied current returns to the transformer substation through lines and ground net. The return current, related to signal, power and power line, and track circuit systems, is one of the most important component in the electric railway. Therefore, to prevent system faults and breakdown according to unbalance and overcurrent of the return current, various and detailed analyses for the return current are needed. In the paper, we present measurement and analysis manners in real environment and evaluate its safety. For analysis, we utilize the measured values of return currents measured in track circuits in electric railway. we expect that this research plays a key role to the related fields.

FuzzyES for Environmental Risk Assessment of Ship Navigation (항행 선박 주변 환경의 위험도 평가를 위한 퍼지 전문가 시스템)

  • Kim, Do-Yeon;Yi, Mi-Ra;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.541-547
    • /
    • 2010
  • Marine accidents do not correspond with another accidents because of a serious loss of lives and property. The many marine accidents can be attributed to human error like as carelessness and decision faults, and hence there is a strong need for decision-support tools for marine navigation. Much of researchers have introduced the techniques about the tools, but they hardly consider environmental factors (water depth, the width of waterway, a fishing ground, a current, the number of surrounding marine accidents, marine obstacles, etc), which are very important to the decision making of officers. In a previous research, we proposed the conceptual model of environmental risk assessment of ship navigation using fuzzy. This paper describes the detailed design of the environmental factors based on the opinion of navigation experts, and shows the validity of the conceptual model through a prototype system.