DOI QR코드

DOI QR Code

Inverter type High Efficency Neon Transformers for Neon Tubes

인버터식 고효율 네온관용 변압기

  • Published : 2002.11.01

Abstract

The conventional neon transformer systems are very bulky and heavy because it consist of leakage type transformers made of silicon steel plates. In addition, it has problems in noise by a neon transformer and in possibilities of fire and electrical shock when neon tubes are destroyed. A protection circuit is designed for all types of neon transformer loaded with one or more neon tubes. Whenever the neon tube fails to be started up, comes to the life end, encounters faults with open-circuits at the output terminals of the neon transformer, the protection circuit will be initiated to avoid more critical hazards. The input of the transformer is automatically cut off when the abnormal condition occurs, preventing waste of no-load power. To improve such problems, in this paper, a new type of neon power supply systems for neon tube is designed and implemented using inverter type circuits and a newly designed lightweight transformer. In the developed neon transformer system, a 60[Hz]power input is converted to 20[KHz]high frequency using half-wave inverters, thereby the transformer reduces its size by 1/5 in volume and 1/10 in weight.

무방향성 규소강판을 사용한 자기식 네온관용 변압기는 내구성이 좋은 반면에 용량에 따른 규소 강판의 무게가 무겁고 외형이 큰 관계로 네온관 설치 작업 시 상당히 불편한 점이 많다. 또한 네온관의 다양한 디스플레이 제어성면에서도 비합리적 이었다. 이를 개선하기 위한 방법으로 네온 트랜스포머의 전원장치 및 2차측 고압 출력부를 고속의 고주파 스위칭 파워 트랜지스터(MOSFET)를 이용하여 상용주파수 60[Hz]를 고속 스위칭 제어를 통하여 20[KHz]의 고주파로 변환시킨후, 네온관을 방전시키기 위한 고전압을 발생시키는 인버터식 네온관용 변압기를 구현하였다. 또한 네온관의 파손이나 누전으로 인한 화재나 인체 감전의 위험을 사전에 방지할 수 있는 보호회로 GFCI(Ground Fault Circuit Interrupter)를 제안 하였다.

Keywords

References

  1. Chin.S.Moo and Hung L.Cheng, “Designing Dimmable Electronic Ballast with Frequency Control”, IEEE pp. 727-733, 1999.
  2. M.K. Kazimierczuk and W. Szaraniec, “Electronic Ballast for Fluorescent Lamps”, IEEE Transactions on Power Electronics, Vol. 8, No. 4, pp.386-395, October 1993. https://doi.org/10.1109/63.261008
  3. M.K. Kazimierczuk, “Class D Voltage-Switching MOSFET Power AmplifierI”, IEEE Proceeding-B. Vol. 138, No. 6, pp. 285-296, November.
  4. J, Qian, F. C. Lee and T. Yamauchi, “Analysis, Design and Experiments of a High Power Factor Electronic Ballast”, IEEE APEC pp. 1024-1029, 1997. https://doi.org/10.1109/APEC.1997.575773
  5. M. C Cosby, R. M. Nelms, “A resonant inverter for electronic ballast Applications Trans.”, Industry Electronic, Vol. 41, No. 4, pp.418-425, Aug. 1994 https://doi.org/10.1109/41.303792
  6. S. Ben-Yaakov, M. Gulko, “Design and Performance of an Electronic Ballast for High Pressure Sodium(HPS) Lamps”, APEC pp.665-669, 1995
  7. Hiroshi Kido, Shinji, Makimura, “A Study of Electronic Ballast for Electrodeless Fluorescent Lamps with Dimming Capabilities”, IEEE pp.889-894, 2001. https://doi.org/10.1109/IAS.2001.955557
  8. John Kmoriarty, JR. Thomas E.trliax, “Electronic Ballast Chip Set with Integral Power FET”, IEEE pp. 2090-2097, 1995. https://doi.org/10.1109/IAS.1995.530569
  9. A. B. Plunkett, “AC current-controlled PWM Transistor Inverter Drive”, IEEE Annual Meeting, pp. 785-792, 1979.
  10. R.King and T.A. Stuart, “A Normalized Moded for the Half-Bridge Series Resonant Converter”, IEEE Trans.. Aerosp. Elec. Syst, Vol AES-17, No2, pp.190-198 Mar. 1981. https://doi.org/10.1109/TAES.1981.309145
  11. H .Matsuo, K. shimizu, F. Kurokawa, “Performance characteristies of a novel modified half-bringe inverter as an electronic ballst for lighting”, IEEE-PESC, pp 2028-2034, June, 1998. https://doi.org/10.1109/PESC.1998.703459