• 제목/요약/키워드: ground fault protection

Search Result 91, Processing Time 0.025 seconds

The Problems and Solutions for 154kV Power Transformer neutral point Ground (154kV 송수전용 변압기 중성점 접지시 문제점과 해결방안)

  • Jeon, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.37-39
    • /
    • 2004
  • To restrain abnormal voltage and effective operation in protect system, some of customer in Korea earth their own transformer in 154kV power system. The above ground system has some problems if ground fault occurs in other related area such as ground relay errors, under count register in two element register system. There for most huge customers opens the ground neutral and it causes errors in insulate and protection coordination and register system. In this paper presents the solution for above system.

  • PDF

A Study on the Separation Distance to Protection of Buried Pipeline from Arc Strikes Caused by Power Line Ground Fault Current (지락사고시 지중금속배관에 대한 아크이격거리에 관한 연구)

  • Ha, Tae-Hyun;Bae, Jeong-Hyo;Lee, Hyun-Goo;Kim, Dae-Kyeong;Kim, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.154-155
    • /
    • 2002
  • The demand of the power and gas energy have been rapidly increasing with the industralization, therefore, the area where buried pipelines run parallel with the adjacent power lines and cross them increases in Seoul as well as other cities. These situation cause AC interference from the power lines. However, there aren't any standards to preserve the pipelines from AC interference in Korea. This study introduces the separation distance to protection of buried pipeline from arc strikes caused by power line ground fault current. And this study examines and compares the arc distance through case study.

  • PDF

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

The fault analysis of transformer to develope protective relaying algorithm for transformer (변압기보호계전 알고리즘 개발을 위한 변압기의 고장해석)

  • Suh, Hee-Seok;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.844-846
    • /
    • 1996
  • This paper deals with a simulation method of faults in a power transformer. Using the [R],[L] matrix supplied by the auxiliary routine of EMTP called BCTRAN, the turn to ground fault and turn to turn fault are simulated and the inrush condition is simulated using saturable transformer model. Data from simulations can be used to identify the response of the digital protection algorithms for transformer.

  • PDF

A Study on the Agent (Protective Device)-based Fault Determination and Separation Methodology for Smart Grid Distribution System

  • Ko, Yun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.102-108
    • /
    • 2015
  • This paper proposes a new fault isolation methodology for a smart protective device which plays an agent role on the smart grid distribution system with the distributed generation. It, by itself, determines accurately whether its protection zone is fault or not, identifies the fault zone and separates the fault zone through the exchange of fault information such as the current information and the voltage information with other protective devices using bi-directional communication capabilities on the smart grid distribution system. The heuristic rules are obtained from the structure and electrical characteristics determined according to the location of the fault and DG (Distributed Generation) when faults such as single-phase ground fault, phase-to-phase short fault and three-phase short fault occur on the smart grid distribution system with DG.

Analysis on Recloser-Fuse Coordination in Loop Power Distribution System with Superconducting Fault Current Limiters (루프화 배전계통에 초전도 한류기 적용에 따른 Recloser-Fuse 보호협조 분석)

  • Choi, Kyu-Wan;Kim, Soo-Swan;Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.111-115
    • /
    • 2015
  • Recently, protection coordination issues can occur due to increased fault current in power system when power system being changed radial power system to grid system such as loop power system, micro grid and smart grid. This paper analyzed Recloser-Fuse coordination in loop power distribution system with Superconducting Fault Current Limiters(SFCLs) when single line ground fault occur in loop power distribution system with SFCLs. We analyzed Recloser-Fuse Coordination in radial power distribution system and changed coordination caused by increased Fault current because of loop system when single line ground fault occur in power distribution system. This paper simulated to improve changed coordination using SFCLs in loop power distribution system. Power distribution system, SFCLs and protective devices are modeled using PSCAD/EMTDC.

The Stability Analysis of Power System Installed Superconducting Fault Current Limiter (고온 초전도 한류기가 설치된 전력 시스템의 안정도 해석)

  • Lee, Seung-Je;Lee, Chan-Ju;Go, Tae-Guk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.227-232
    • /
    • 1999
  • The stability of Power system installed Hi-Tc Superconducting Fault Current Limiter(SFCL) is analyzed as a process of developing SFCL. For investigation, a simple mimic system(only one generator) is assumed and then the circuit with SFCL in that system is solved for transient performance. In case the SFCL is installed in the power system, it protected synchronization more effectively both in symmetrical 3-phase fault and single phase line to ground fault in that the machine remains in synchronism for the more time than of without superconducting fault current limiter. It shows that the superconducting fault current limiter not only limits fault current but also protest synchronism. So for design of this SFCL, its synchronism protection property must be considered.

  • PDF

Identification of Arcing Fault and Development of An Adaptive Reclosing Technique about Arcing Ground Fault (아크지락사고에 대한 사고 판별 및 적응 재폐로 기법)

  • Kim, H.H.;Choo, S.H.;Chae, M.S.;Park, J.B.;Shin, J.R.
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.354-356
    • /
    • 2006
  • This paper presents a new one-terminal numerical algorithm for fault location estimation and for faults recognition. The proposed algorithm are derived for the case of most frequent single-phase line to ground fault in the time domain. The arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent of transient. In this paper the algorithm uses a very short data window and enables fast fault detection and classification for real-time transmission line protection. To test the validity of the proposed algorithm the Electro-Magnetic Transient Program(EMTP/ATP) is used.

  • PDF

Modified Transmission Line Protection Scheme in the Presence of SCC

  • Naeini, Ehsan Mostaghimi;Vaseghi, Behrouz;Mahdavian, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.533-540
    • /
    • 2017
  • Distance relay identifies the type and location of fault by measuring the transmission line impedance. However any other factors that cause miss calculating the measured impedance, makes the relay detect the fault in incorrect location or do not detect the fault at all. One of the important factors which directly changes the measured impedance by the relay is series capacitive compensation (SCC). Another factor that changes the calculated impedance by distance relay is fault resistance. This paper provides a method based on the combination of distance and differential protection. At first, faulty transmission line is detected according to the current data of buses. After that the fault location is calculated using the proposed algorithm on the transmission line. This algorithm is based on active power calculation of the buses. Fault resistance is calculated from the active powers and its effect will be deducted from calculated impedance by the algorithm. This method measures the voltage across SCC by phasor measurement units (PMUs) and transmits them to the relay location via communication channels. The transmitted signals are utilized to modify the voltage signal which is measured by the relay. Different operating modes of SCC and as well as different faults such as phase-to-phase and phase-to-ground faults are examined by simulations.

A Study on the Algorithm for Fault Discrimination in Transmission Lines Using Neural Network and the Variation of Fault Currents (신경회로망과 고장전류의 변화를 이용한 고장판별 알고리즘에 관한 연구)

  • Yeo, Sang-Min;Kim, Chul-Hwan;Choi, Myeon-Song;Song, Oh-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.366-368
    • /
    • 2000
  • When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper proposes the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.

  • PDF