• Title/Summary/Keyword: ground fault

Search Result 738, Processing Time 0.022 seconds

A Study on the Correction of Protection Relay of Temporary Electric Power Installations for Storage Tank (저장 탱크용 임시전력설비의 보호계전기 정정에 관한 연구)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.562-567
    • /
    • 2020
  • In this paper, this is a study on the correction of protection relays to monitor temporary power facilities for storage tanks especially transformers to block and protect faults such as insulation breakdown. When an abnormality such as a short circuit or a ground fault occurs in the power system, it is important to detect this quickly cut off the device and equipment in which the fault occurred and separate it from the power system to correct the protection relay so that it does not interfere with power supply. In addition the fault current calculation that accurately applies the fault type and the cause of the fault for protection cooperation will be the most important factor in the correction of the protection relay. For protection coordination a study was conducted on the method of coordination for protection of power facility protection for storage tanks such as over current relay, ground over current relay, under voltage relay, and ground over voltage relay applied to temporary.

Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties

  • Sadegh, Etedali;Mohammad, Seifi;Morteza, Akbari
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.381-391
    • /
    • 2023
  • The seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and powerful method is utilized in the paper. The present study aims to carry out reliability analyses on tall buildings equipped with TMD under near-field pulse-like (NFPL) ground motions considering SSI effects using a subset simulation (SS) method. In the presence of uncertainties of the structural model, TMD device, foundation, soil, and near-field pulse-like ground motions, the numerical studies are performed on a benchmark 40-story building and the failure probabilities of the structures with and without TMD are evaluated. Three types of soils (dense, medium, and soft soils), different earthquake magnitudes (Mw = 7,0. 7,25. 7,5 ), different nearest fault distances (r = 5. 10 and 15 km), and three seismic performance levels of immediate occupancy (IO), life safety (LS), and collapse prevention (CP) are considered in this study. The results show that tall buildings built near faults and on soft soils are more affected by uncertainties of the structural and ground motion models. Hence, ignoring these uncertainties may result in an inaccurate estimation of the maximum seismic responses. Also, it is found the TMD is not able to reduce the failure probabilities of the structure in the IO seismic performance level, especially for high earthquake magnitudes and structures built near the fault. However, TMD is significantly effective in the reduction of failure probability for the LS and CP performance levels. For weak earthquakes and long fault distances, the failure probabilities of both structures with and without TMD are near zero, and the efficiency of the TMD in the reduction of failure probabilities is reduced by increasing earthquake magnitudes and the reduction of fault distance. As soil softness increases, the failure probability of structures both with and without TMD often increases, especially for severe near-fault earthquake motion.

Analysis of Current Limiting Characteristics According to Fault Angles in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (일체화된 삼상 자속구속형 고온초전도 전류제한기의 사고각에 따른 전류제한 특성 분석)

  • Park, Chung-Ryul;Du, Ho-Ik;Yim, Seong-Woo;Hyun, Ok-Bae;Lim, Sung-Hun;Park, Hyoung-Min;Cho, Yong-Sun;Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.255-256
    • /
    • 2006
  • In this paper, we investigated the. characteristics of fault current limiting according to fault angle in the integrated three-phase flux-lock type SFCL in fault types such as the single-line-to-ground fault, the double-line-to-ground fault and the three-line-to-ground fault. When the SFCL is operating under normal condition, the magnetic flux generated between primary and secondary coils of each single phase is canceled out perfectly, so that the impedance of the SFCL is also not generated and the power system can be operated normally without any loss, However, if a fault occurs even in any phase out of three phases, quench happened in SFCL elements and the current flowing secondary coil is restricted abruptly. Finally, the balance of magnetic flux in whole SFCL system is destroyed, and the fault currents in every phase could be limited at the same time irrespective of the fault types. As a result, the developed SFCL in this study were operated normally as expected and the purpose of the integration of 3 phase current limiting was also achieved successfully. However, the fault current limiting characteristics of the SFCL was dependant on the quench characteristics of HTSC elements in each phase, and it was expected that the improvement of the SFCL could be possible through the introduction of HTSC elements which have better critical characteristics.

  • PDF

Estimation of Earth Performance by Ground Potential Measurement (대지전위 실측에 의한 접지성능 평가)

  • Lee, Won-Young;Kim, Jea-Hoon;Kim, Ju-Han;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2005.05b
    • /
    • pp.51-53
    • /
    • 2005
  • Grounding systems are responsible rot the safe operation of a power system whetehr power system fault occures or not, their performance guarantees equipmet protection and personnel safety by limited the ground potential rise and touch voltages as well as step voltages under ground fault condition. therefore, it is necessary to measure the ground resistance frequently for checing the performance of grounding system. In order to verigy the designed grounding measurement system feasibility, two comparison verifications, which are the ground resistnace measurements using the designed system on power service and off power service, are carried out for the same substation.

  • PDF

A System IC for Controlling the Fire Prevention (화재방지제어 시스템 IC)

  • Kim, Byung-Cheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.737-746
    • /
    • 2009
  • In this study, we have developed one chip system IC for preventing the overload, detecting an abnormal conditions, and controlling the fire prevention in the intelligent home appliances. For the purpose, a circuit detectable an electric leak for preventing an electric shock, and a circuit detectable arc that has effect directly on the fire are designed. The circuits designed on every block are verified by comparing simulation with bread-boarding using a standard transistors. The system IC is fabricated by using 34 V 2 metal $1.5{\mu}m$ bipolar transistor process from evaluation results. The electrical performances of IC application circuits and the system IC equipped on PCB board are evaluated. It is confirmed that the system IC is well operated for arc and ground fault(GF) signal.

Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion

  • Losanno, Daniele;Hadad, Houman A.;Serino, Giorgio
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.119-130
    • /
    • 2017
  • This paper presents a numerical investigation on the seismic behavior of isolated bridges with supplemental viscous damping. Usually very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. First, a suggested optimal design procedure is introduced, then seismic performance of three real bridges with different isolation systems and damping levels is investigated. Each bridge is studied in four different configurations: simply supported (SSB), isolated with 10% damping (IB), isolated with 30% damping (LRB) and isolated with optimal supplemental damping ratio (IDB). Two of the case studies are investigated under spectrum compatible far-field ground motions, while the third one is subjected to near-fault strong motions. With respect to different design strategies proposed by other authors, results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution. Thanks to confirmed effective performance in terms of base shear mitigation and displacement reduction under both far field and near fault ground motions, as well as for both simply supported and continuous bridges, the suggested control system provides robustness and reliability in terms of seismic performance also resulting cost effective.

Inelastic Response Characteristic Analysis of Frame Structures Subjected to Near Fault Ground Motion (근거리지진을 받는 골조 구조물의 비탄성응답 특성 분석)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.273-284
    • /
    • 2006
  • In this study, After considering the general characteristic of Near Fault Ground Motion, the inelastic response spectrum is made to evaluate using the change of ductility and yield stiffness coefficient according to the inelastic behavior of structures which couldn't be examined through the elastic response spectrum. It is conducted to the elastic and inelastic time history analysis about the long period structure which could reflect the characteristic of Near Fault Ground Motion with the best and it is also examined the aspect of response distribution about the input data. Moreover, the response characteristic of structure is analyzed by investigating the plastic hinge for the purpose of grasp about the inelastic behavior of structure.

Characteristics of the SFCL by turn-ratio of three-phase transformer

  • Jeong, I.S.;Choi, H.S.;Jung, B.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.34-38
    • /
    • 2013
  • According to the increase of electric consumption nowadays, power system becomes complicated. Due to this, the size of single line-to-ground fault from power system also increases to have many problems. In order to resolve these problems effectively, an Superconducting Fault Current Limiter(SFCL) was proposed and continuous study has been done. In this paper, an SFCL was combined to the neutral line of a transformer. An superconductivity has the characteristics of zero resistance below critical temperature. because of this, SFCL has nearly zero resistance. so we connecting SFCL to neutral line will not only have any loss in the normal operation but also have the less burden of electric power because of only limiting the initial fault current. We analyzed the characteristics of current, voltage according to the changes of turn ratio of 3 phase system in case of combinations of an SFCL to the neutral line. It was confirmed that the limiting rate of initial fault current by the increase of turn ratio was reduced.

Dynamic Voltage Compensator using Series and Shunt Inverters (직.병렬 인버터를 이용한 동적전압보상기)

  • Park, Deok-Hui;Lee, Jun-Gi;Han, Byeong-Mun;So, Yong-Cheol;Kim, Hyeon-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.655-662
    • /
    • 1999
  • This paper describes controller design and simulation-model development of a dynamic voltage compensator using series and shunt inverters. The control system was designed using PI controller and vector relationship between the supply voltage and load voltage. A simulation model with EMTP was developed to analyze performance of the controller and the whole system. The simulation and experiment results confirm that the dynamic compensator can restore the load voltage under the fault of the distribution system, such as single-line-ground fault, three-line-to-ground fault, and line-to-line fault.

  • PDF

Fault Analysis for Electric Railway System (전기철도 시스템의 사고 해석)

  • Lee, Han-Min;Jang, Dong-Uk;Kim, Gil-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.291-295
    • /
    • 2005
  • This paper presents the modeling of grounding system on Korean electric railway system. The system model is composed of the catenary system, the grounding-system, the sub-sectioning post, the fault point, the sectioning post, the autotransformer in the substation, and the electric vehicle. The increment of rail-ground voltage may be thought as an amplifier of danger on human body of equipment insulation. The rail-ground voltage on steady state and on fault condition should be under standard limit voltage. To analyze grounding system for steady state and fault condition on Korean railway, modeling for each railway system is performed by 10-port network model. Modeling and analysis of present grounding-system are important to protect human and electronic equipments. The examinations for systematic grounding-system are investigated.

  • PDF