• 제목/요약/키워드: ground effects

검색결과 2,601건 처리시간 0.038초

생석회파일에 의한 연약지반개량효과 (The Improvement Effects of Soft Ground by Quick Lime Pile)

  • 천병식;고갑수;장은석;임지섭;이용한
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.383-389
    • /
    • 1999
  • This paper is a study on the improvement effects by quick lime pile through theoretical analysis and in-situ construction test. Effects of strength increase is studied to verify the improvement effects of soft ground arounding quick lime pile. First, engineering characteristics of quick lime and ground was studied, in the second place, laboratory test(consolidation test, triaxial compression test) and in-situ test(portable cone penetration test, vane test) were peformed for verification of strength increase of adjacent ground. Finally, the results of in-situ test were compared with those of theorecal study. From in-situ test results, strength at 28th curing days(6.11-6.55t/㎡) was twice as great as strength before improvement(3.06t/㎡) and was slightly greater than theoretical value(4.95t/㎡).

  • PDF

Contribution of local site-effect on the seismic response of suspension bridges to spatially varying ground motions

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1233-1251
    • /
    • 2016
  • In this paper, it is aimed to determine the stochastic response of a suspension bridge subjected to spatially varying ground motions considering the geometric nonlinearity. Bosphorus Suspension Bridge built in Turkey and connects Europe to Asia in Istanbul is selected as a numerical example. The spatial variability of the ground motion is considered with the incoherence, wave-passage and site-response effects. The importance of site-response effect which arises from the difference in the local soil conditions at different support points of the structure is also investigated. At the end of the study, mean of the maximum and variance response values obtained from the spatially varying ground motions are compared with those of the specialised cases of the ground motion model. It is seen that each component of the spatially varying ground motion model has important effects on the dynamic behaviour of the bridge. The response values obtained from the general excitation case, which also includes the site-response effect causes larger response values than those of the homogeneous soil condition cases. The variance values calculated for the general excitation case are dominated by dynamic component at the deck and Asian side tower. The response values obtained for the site-response effect alone are larger than the response values obtained for the incoherence and wave-passage effects, separately. It can be concluded that suspension bridges are sensitive to the spatial variability of ground motion. Therefore, the incoherence, the wave-passage and especially the site-response effects should be considered in the stochastic analysis of this type of engineering structures.

반응염료/반응염료에 의한 면직물 방발염시 패딩액 조제의 영향 (The Effects of Agents in Padding Liquor on the Resist-discharge Printing of Cotton Fabrics with Reactive/Reactive Dyes)

  • 김형우;박건용;박병기;김진우
    • 한국염색가공학회지
    • /
    • 제7권3호
    • /
    • pp.22-30
    • /
    • 1995
  • The effects of agents in padding liquor on the fixation of vinylsulfonyl reactive dye of ground color and on the resist-dischargeability in resist-discharge printing of cotton fabrics with reactive/reactive dyes were investigated. Alkalis, such as sodium bicarbonate, sodium carbonate, sodium acetate and trichloro sodium acetate, were used to fix the dye for ground color on cotton fabrics. Sodium bicarbonate and sodium carbonate showed a good fixation of the dye for ground color, but they were ineffective to the white and the colored resistdsichargeabilities, which were caused by the fast fixation of the dye for ground color before its reaction with resist agent in printing paste. Therefore these are not suitable for the agent to fix the dyes for ground color because they deteriorate the resist-dischargeability. In case of sodium acetate, as the fixation yield of the dye for ground color was remarkably low. and the white resistdischargeability was not good, it had better not be used for the agent to fix the dye for ground color. However, the addition of sodium trichloroacetate to padding liquor gave a very good fixation yield of ground color, and showed an excellent resist-dischargeability. The effects of acetic acid in padding liquor on the fixation of the dye for ground color and on the resist-dischargeability were studied in case of immediate printing of resist-discharge pastes after padding and drying and in cases of printing after 1∼3 day-storage of padded goods. By the addition of 2% of 48% acetic acid aqueous solution to padding liquor, the white and the colored resist-dischargeabilities were improved and the fixation of the dye for ground color was good without any troubles. Especially, when the padded goods were stored for 2 or 3 days and printed with resist-discharge printing pastes, its addition was very effective on the resist-dischargeability.

  • PDF

다짐말뚝 채움재로서 슬래그의 적용성 연구 (A Study on the Applicability of Slag as Compaction Pile Material)

  • 이미혜;이상익;박용원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.207-214
    • /
    • 2000
  • Sand Compaction Pile method is one of the widely used ground improvement techniques at loose sand or soft clay ground in Asian countries. However, due to environmental and economical problems concerning shortage of sand resources alternative materials are needed to substitute sand for SCP. This study is on the applicability of slag as an alternative material SCP. Consolidation and direct shear test are performed for the slag-clay composite specimens to find out the positive effects of consolidation rate and shear resistance of slag reinforced ground. The result shows that slag has similar effects with sand in consolidation and shear resistance behavior in composite ground, which says slag can be used as alternative material of sand for SCP.

  • PDF

굴착유발 지반변위에 의한 인접구조물의 거동 및 손상도 예측 (Building Response to Excavation-Induced Ground Movements and Damage Estimation)

  • 손무락
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.249-256
    • /
    • 2006
  • New infrastructures and buildings are being constructed increasingly in congested urban areas, and excavation-induced ground movements often cause distortion and damage to adjacent buildings. Protection of adjacent structures occupies a major part of the cost, schedule and third-party impacts of urban development. To limit damage or mitigate their effects on nearby structures, it is highly important to understand the whole mechanism from excavation to building damage, and to estimate building damage reliably before excavation and provide appropriate measures. This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions for ground and structures, and a building damage criterion, which is based on the state of strain, is proposed. The criterion is compared with other existing damage estimation criteria and a procedure is finally provided for estimating building damage due to excavation-induced ground movements.

  • PDF

내부 열용량을 고려한 수직 지중열교환기의 3차원 수치 모델 개발 (Development of a Three-Dimensional Numerical Model of the Vertical Ground-Coupled Heat Exchanger Considering the Effects of the Thermal Capacity)

  • 김의종
    • 설비공학논문집
    • /
    • 제28권7호
    • /
    • pp.293-298
    • /
    • 2016
  • A three-dimensional (3D) numerical model of the vertical ground-coupled heat exchanger is useful for analyzing the modern ground source heat pump system. Furthermore, a detailed description of the inner side of the exchanger allows to account for the effects of the thermal capacity. Thus, both methods are included in the proposed numerical model. For the ground portion, a FDM (Finite Difference Method) scheme has been applied using the Cartesian coordinate system. Cylindrical grids are applied for the borehole portion, and the U-tube configuration is adjusted at the grid, keeping the area and distance unchanged. Two sub-models are numerically coupled at each time-step using an iterative method for convergence. The model is validated by a reference 3D model under a continuous heat injection case. The results from a periodic heat injection input show that the proposed thermal capacity model reacts more slowly to the changes, resulting in lower borehole wall temperatures, when compared with a thermal resistance model. This implies that thermal capacity effects may be important factors for system controls.

Hypersonic Aero-Heating Ground-Test Simulation Technique

  • Li, Ruiqu;Yao, Dapeng;Sha, Xinguo;Gong, Jian
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.50-53
    • /
    • 2015
  • It would encounter some complicated flow fields, such as transition, separation, reattachment and disturbances, in the hypersonic flight. Thus, it is difficult to theoretically analyze the hypersonic aerothermodynamics effects, so that the ground-test simulation is thought of as one of the most important methods to improve the understanding level of the hypersonic aerothermodynamics. However, the aero-heating tests could not simulate all aerodynamics and geometry parameters in the real flight due to the differences between the experimental environments supplied by the ground facilities and the flight, so that the feasible technique for the ground-test simulation of the hypersonic aerothermodynamics effects is required to be advanced. The key parameters that are especially required to simulate for aero-heating tests are analyzed and one detailed approach is suggested to perform the experimental investigation on the hypersonic aero-heating effects in the ground facilities in this paper, and the tests are performed in the FD-20 gun tunnel of CAAA (China Academy of Aerospace Aerodynamics) to give out the data which could be used to confirm the equation from the theoretical analysis.

Jet-grouting in ground improvement and rotary grouting pile installation: Theoretical analysis

  • Wang, You;Li, Lin;Li, Jingpei;Sun, De'an
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.279-288
    • /
    • 2020
  • The permeation grouting is a commonly used technique to improve the engineering geology condition of the soft ground. It is of great significance to predict the permeation range of the grout so as to ensure the effects of grouting. This paper conducts a theoretical analysis of jet-grouting effects in ground improvement and rotary grouting pile installation by utilizing deformation-permeation coupled poroelastic solutions based on Biot's theory and Laplace-Fourier integral transform technique. The exponential function and the intermittent trigonometric function are chosen to represent time-dependent grouting pressure usually encountered in ground improvement and rotary grouting pile installation process, respectively. The results, including the radial displacement, the hoop stress, the excess pore fluid pressure, the radial discharge, and the permeation radius of grout, are presented for different grouting time, radial positions and grouting lengths. Parametric study is conducted to explore the effects of variation of the exponent in the exponential grouting pressure-time relationship on grouting-induced responses. It is expected that the proposed solutions can be used to estimate the permeation range of grouting in ground improvement and rotary grouting pile installation.

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • 한국정보기술학회 영문논문지
    • /
    • 제8권2호
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

지역필터를 이용한 수변전실 접지저항의 새로운 측정방법 (A New Measurement Method of the Ground Resistance Using a Low-pass Filter in Energized Substations)

  • 이복희;엄주홍;이승칠;김성원;안창환
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권8호
    • /
    • pp.387-393
    • /
    • 2001
  • This paper describes an advanced measuring method and precise evaluation of the ground resistance for the grounding system of energized substations and power equipments. A grounding system of substations consists of all interconnected grounding connections of grounded conductors, neutral ground wires, underground conductors of distribution lines, cable shields, grounding terminals of equipments, and etc. It is very difficult to measure the accurate ground resistance of the grounding terminals of equipments, and etc. It is very difficult to measure the accurate ground resistance of the grounding system of high voltage energized substations because of harmonic components caused by switched power supplies or overloads. The conventional fall-of-potential method may be subject to big error if stray ground currents and potentials are present. In this work, to improve the precision in measurements of the ground resistance by eliminating the effects of harmonic components and stray currents and potentials, the investigations of the ground resistance measurement by using a low pass filter in a model energized grounding system were conducted. The accuracy of ground resistance mesurements was evaluated as a function of the ratio of the test signal to noise (S/N). The errors due to the proposed ground resistance measurement method were decreased with increasing S/N and were less than 5[%] as S/N is 10. The proposed ground resistance measurement method appears to be considerably more accurate than the conventional fall-of -potential method. It is allows cancellation of the parasitic resistance of energized grounding systems, to employ the measurement method that allows cancellation of the parasitic effects due to other circulating ground currents and ground potential rises in practical situations.

  • PDF