• Title/Summary/Keyword: ground behavior

Search Result 1,864, Processing Time 0.029 seconds

Rebar corrosion effects on structural behavior of buildings

  • Yuksel, Isa
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1111-1133
    • /
    • 2015
  • Rebar corrosion in concrete is one of the main causes of reduction of service life of reinforced concrete buildings. This paper presents the influence of rebar corrosion on the structural behavior of reinforced concrete (RC) buildings subjected to strong earthquake ground motion. Different levels of rebar corrosion scenarios were applied on a typical four story RC frame. The deteriorated conditions as a result of these scenarios include loss in cross-sectional area and loss of mechanical properties of the reinforcement bars, loss in bond strength, and loss in concrete strength and its modulus of elasticity. Dynamic analyses of the frame with different corrosion scenarios are performed with selected strong earthquake ground motion records. The influences of degradation in both concrete and reinforcement on structural behavior are investigated by comparing the various parameters of the frame under different corrosion scenarios with respect to each other. The results show that the progressive deterioration of the frame due to rebar corrosion causes serious structural behavior changes such as change in failure mode. The intensity, propagation time, and extensity of rebar corrosion have very important effects on the level of degradation of steel and concrete, as well as on the earthquake behavior of the structure.

Centrifuge Model Experiments and Numerical Analyses of the Behavior of Excavated Marine Clay Slope (해성점토 굴착사면의 거동에 관한 원심모형실험 및 수치해석)

  • Park, Byung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.49-56
    • /
    • 2006
  • In this thesis, centrifuge model experiments and numerical analyses were carried out to investigate the behavior of an excavated slope in soft clay ground. Centrifuge model tests were performed with various slopes for the excavated ground, such as 1:1.5 and 1:2. Pore pressuresthe model ground were measured to find their effects on the stability of the excavated slope. These experiments showed that the model with 1:2.5 maintained its stability within a short period of time and failed gradually. Therefore, anexcavated slope of soft soil with this slope might maintain stable conditions within a certain time. The mode1 with a 1:3 slope was observed to maintain a very stable condition, showing insignificant deformation in the ground after being excavated. Numerical analyses with PLAXIS, a commerciallyavailable software implemented with the finite element numerical technique, were performed to find the pore pressure distribution within the ground mass and the deformation of the soil. From the results of numerical analysis, a negative pore pressure was developed after the excavation and thus the stability of the slope was maintained. The safety factor for slope failure was found to decrease with time because of the dissipation of negative pore pressure with time.

A Study on Centrifuge Model Experiments of Soft Soil Ground Installed with PBD (PBD가 설치된 연약지반의 원심모형실험에 관한 연구)

  • Jeong, Gil-Soo;Park, Byung-Soo;Jeon, Sang-Hyun;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.101-108
    • /
    • 2006
  • This study is the results of experimental and numerical study on the consolidational behavior of multi-layered soft soil ground installed with plastic board drains (PBD). Centrifuge model tests with a marine clay sampled from field were performed to investigate the consolidational behavior of multi-layered ground where a dredged soil was placed on the soft clay ground and PBDs were installed. Test results were compared with those of numerical analyses, using the 2-D equivalent model previously proposed. From test results, it was found that the amount of consolidation settlement occurred in the original ground due to embankment surcharge loads was in the range of 38% of total settlement in the whole ground. From the results of cone penetration tests executed after finishing the centrifuge model tests, the cone resistance was found to increase with depth. The measured water contents inbetween PBDs were in the ranges of 38~50% and their values tended to increase with increasing the distance between PBDs.

  • PDF

The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions

  • Abbasi, Saeed;Ardakani, Alireza;Yakhchalian, Mansoor
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 2021
  • Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.

Analysis of the Behavior of Reinforced Earth Retaining Walls Constructed on Soft Ground Using the Replacement Method (치환공법을 적용한 연약지반에 시공된 보강토옹벽의 거동해석)

  • Ki, Wan-Seo;Joo, Seung-Wan;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.601-613
    • /
    • 2007
  • It is reported that factors affecting the behavior of reinforced earth retaining walls built on soft ground are not only basic physical properties but also the increase of load by the reinforced earth retaining walls, consolidation period, pore water pressure, etc. This study analyzed the behavior of reinforced earth retaining walls and soft ground using SAGE CRISP, a ground analysis program. First, we examined the effect of the replacement method, which was to prevent the excessive displacement of reinforced earth retaining walls, in improving the behavior of the walls. Second, we compared and analyzed how the behavior of ground is affected by the vertical interval of stiffeners on the back of reinforced earth retaining walls after the application of the replacement method. Lastly, we proposed the optimal replacement width and depth in the application of the replacement method. The results of this study proved that the replacement method is considerably effective in improving the behavior of reinforced earth retaining walls. In addition, the vertical interval of stiffeners on the back of reinforced earth retaining walls appeared effective in improving the horizontal displacement of the top of retaining walls but not much effective in improving the vertical displacement of the back of retaining walls. In addition, improvement in horizontal-vertical displacement resulting from the increase in replacement width was not significant and this suggests that the increase of replacement width is not necessary. With regard to an adequate replacement depth, we proposed the ratio of replacement depth to the height of retaining walls(D/H) according to the ratio of the thickness of the soft layer to the height of retaining walls(H/T).

Analysis of Relative Settlement Behavior of Retaining Wall Backside Ground Using Clustering (군집분류를 이용한 흙막이 벽체 배면 지반의 상대적 침하거동 분석)

  • Young-Jun Kwack;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.189-200
    • /
    • 2023
  • As urbanization and industrialization increase development in downtown areas, damage due to ground settlement continues to occur. Building collapse in urban has a high risk of leading to large-scale damage to life and property. However, there has rarely been studied on measurement data analysis methods when uneven loads are applied to the excavated ground and no prior knowledge of the ground. Accordingly, it was attempted to analyze the relative settlement behavior and correlation by processing the time-series surface settlement of construction sites in the urban. In this paper, the average index of difference in settlement and average of relative difference in settlement are defined and calculated, then plotted in the coordinate system to analyze the relative settlement behavior over time. In addition, since there was no prior knowledge of the ground, a standard to classify the clusters was needed, and the observation points were classified into using k-means clustering and Dunn Index. As a result of the analysis, it was confirmed that all the clusters moved to the stable region as the settlement amount converges. The clusters were segmented. Based on the analysis results, it was possible to distinguish between the independent displacement area and same behavior area by analyzing the correlation between measurement points. If possible to analyze the relative settlement behavior between the stations and classify the behavior areas, it can be helpful in settlement and stability management, such as uplift of the surrounding area, prediction of ground failure area, and prevention of activity failure.

Influence of wall flexibility on dynamic response of cantilever retaining walls

  • Cakir, Tufan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • A seismic evaluation is made of the response to horizontal ground shaking of cantilever retaining walls using the finite element model in three dimensional space whose verification is provided analytically through the modal analysis technique in case of the assumptions of fixed base, complete bonding behavior at the wall-soil interface, and elastic behavior of soil. Thanks to the versatility of the finite element model, the retained medium is then idealized as a uniform, elastoplastic stratum of constant thickness and semi-infinite extent in the horizontal direction considering debonding behavior at the interface in order to perform comprehensive soil-structure interaction (SSI) analyses. The parameters varied include the flexibility of the wall, the properties of the soil medium, and the characteristics of the ground motion. Two different finite element models corresponding with flexible and rigid wall configurations are studied for six different soil types under the effects of two different ground motions. The response quantities examined incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that the wall flexibility and soil properties have a major effect on seismic behavior of cantilever retaining walls and should be considered in design criteria of cantilever walls. Furthermore, the results of the numerical investigations are expected to be useful for the better understanding and the optimization of seismic design of this particular type of retaining structure.

Finite Element Analysis on the Ground Behavior for Tunnel with Pipe-roof (파이프루프공법이 적용된 터널의 지반거동 유한요소 해석)

  • Jo, Seon-Ah;Jin, Kyu-Nam;Sim, Young-Jong
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.261-269
    • /
    • 2016
  • Pipe-roof method is one of the mostly used method to prevent the ground subsidence during the tunnel construction. As pipe-roof method has made technical advancement and performance improvement, it suggested to utilize pipe-roof to a permanent support system rather than a temporal pre-reinforcing method. Therefore, in this study, pipe-roof method is numerically simulated using finite element method to evaluate effects of pipe-roof on behavior of ground and structure. Analyses are performed considering two major conditions that are with and without the application of pipe-roof and the shape of tunnel cross section. The results are presented with respect to variation of settlement and vertical stress distribution. Based on this results, it is found that ground settlement above the shallow tunnel can be considerably reduced by application of pipe-roof system. Also, the shape of tunnel cross section can influence on the mechanical behavior of ground and structure.

A Study on the Behavior of Surface Settlement due to the Excavation of Twin TBM Tunnels in the Clay Grounds (점토지반에서 TBM 병렬터널 굴진 시 지표침하거동에 대한 연구)

  • You, Kwangho;Jung, Suntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.29-40
    • /
    • 2019
  • Mechanized constructions have been frequently increased in soft ground below sea bed or river bed, for urban tunnel construction, and for underpinning the lower part of major structures in order to construct a safer tunnel considering various risk factors during the tunnel construction. However, it is difficult to estimate the subsidence behavior of the ground surface due to excavation and needs to be easily predicted. Thus, in this study, when a twin tunnel is constructed in the soft ground, it is proposed a simpler equation relating to the settlement behavior and a corrected formula applicable to soft ground and large diameter shield tunnels based on the previously proposed theory by Peck (1969). For this purpose, it was analyzed to long-term measurement values such as the amount of maximum settlement, the subsidence range by ground conditions, and interference volume loss due to the parallel construction, etc. As a result, a equation was suggested to predict the amount of maximum settlement in the soft sediment clay ground where is located at the upper part of the excavation site. It is turned out that the proposed equation is more suitable for measurement data in Korea than Peck (1969)'s.

Dynamic behavior of submerged floating tunnels at the shore connection considering the use of flexible joints

  • Seok-Jun Kang;Minhyeong Lee;Jun-Beom An;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.101-112
    • /
    • 2023
  • When a submerged floating tunnel is connected to the ground, there is a risk of stress concentration at the shore connection owing to the displacement imbalance caused by low confinement pressures in water and high confinement pressures in the ground. Here, the effects of the boundary condition and stiffness of the joints installed at the shore connection on the behaviors of a submerged floating tunnel and its shore connection were analyzed using a numerical method. The analysis results obtained with fixed and ground boundaries were similar due to the high stiffness of the ground boundary. However, the stability of the shore connection was found to be improved with the ground boundary as a small displacement was allowed at the boundary. The effect of the joint stiffness was evaluated by investigating the dynamic behavior of the submerged floating tunnel, the magnitude of the load acting on the bored tunnel, and the stress distribution at the shore connection. A lower joint stiffness was found to correspond to more effective relief of the stress concentration at the shore connection. However, it was confirmed that joints with low stiffness also increase the submerged floating tunnel displacement and decrease the frequency of the dynamic behavior, causing a risk of increased resonance when wave loads with low frequency are applied. Therefore, it is necessary to derive the optimal joint stiffness that can achieve both stress concentration relief and resonance prevention during the design of shore connections to secure their dynamic stability.