• Title/Summary/Keyword: gripping

Search Result 130, Processing Time 0.02 seconds

The Effects of Flexion Angle of Shoulder Joints in Various Postures on Grip Strength (자세에 따른 어깨관절 굽힘 각도가 악력에 미치는 영향)

  • Lee, Sam Cheol;Kim, Bong Whan;Woo, Jung Jae
    • Journal of Korean Physical Therapy Science
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • Background and purpose : The shoulder joints permit the greatest mobility of any joint area carries out the important function of stabilization for hand use. Research has now shown that grip strength has proven to be a reliable indicator for quality of life at an older age. The purpose of this study was to investigate the effects of testing posture and shoulder position on grip strength for repetitive gripping task. Methods : Forty(20male, 20female) college adult volunteers with no known shoulder dysfunction participated subject in two testing posture(sitting and standing) and three positions with shoulder flexion: (1) shoulder $0^{\circ}$ flexion (2) shoulder $90^{\circ}$ flexion (3) shoulder $180^{\circ}$ flexion. The paired t-test was used to determine any significant difference in grip strength between the testing posture and shoulder position. Results : The higher grip strength gained in the sitting with the shoulder $180^{\circ}$ flexion and the higher grip strength gained in the standing with the shoulder $180^{\circ}$ flexion. The second experiment showed that the grip strength was significant for sitting, standing position of shoulder $0^{\circ}$ flexion( p<0.05). Grip strength goes up as increase height and weight. Conclusion : These findings demonstrate that the theory does not fit with, because of the influence of gravity, a measure from the shoulder joint is the most high, $0^{\circ}$. And sitting posture and stance in the grip of a difference when compared SIT $0^{\circ}$ and standing position $0^{\circ}$ significant difference in indicated but, $90^{\circ}$ and $180^{\circ}$ in the sitting position and stance in the grip of the difference was not significant difference. To demonstrate the universality of this study's results, future studies should have a larger and more subject as well as a more even distribution of male and female subject. Therefore future research is needed to refine the definition and identify optimal methods of measuring this grip strength.

  • PDF

The Effect of Lightly Gripping a Cane on Sit-to-stand Transfer in Post-stroke Patients

  • Choi, Young-eun;An, Duk-hyun
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.54-59
    • /
    • 2017
  • Background: Light touch cue is a sensory input that could potentially help in the control of posture. The immediate stimulatory effect of light touch cues using a cane during gait is associated with postural stability. This strategy can help post-stroke individuals regain their ability to perform the sit-to-stand (STS) transfer safely. Objects: The effects of light grip on postural control during the STS transfer in post-stroke subjects were investigated. Methods: Eleven participants (6 men, 5 women) with hemiplegia due to stroke were recruited in the study. The subjects with hemiparesis performed STS transfer in three randomly assigned conditions (1) without a cane (2) light grip with a cane (3) strong grip with a cane. Results: The difference in weight-bearing distribution between the left and right feet, when the subjects were instructed to stand up, was $52.73{\pm}2.13%$ without a cane, $42.75{\pm}3.26%$ with a strong grip, and $43.00{\pm}2.55%$ with a light grip (p<.05). The rate of rise in force indicates the peak power provided by subjects during their STS transfers. The rate of rise in force was statistically significantly lower without a cane than that with a light grip or a strong grip (p<.05). The subjects' centers of pressure sway on the mediolateral side during STS transfers statistically significantly declined with a light grip or a strong grip when compared to those without a cane (p<.05). Conclusion: When the subjects with hemiparesis used a cane during STS transfers, their duration, center of pressure sway, and difference in weight-bearing distribution were all reduced. The subjects also exhibited similar results during STS transfers with a cane gripped lightly. This result may provide guidelines for the use of assistive devices when patients with hemiparesis practice STS transfers in clinical settings.

Health Promotion Behavior according to Body Mass Index and Self-Perception of Body Weight in Female Nursing Students (간호학과 여학생의 체질량지수와 체중지각에 따른 건강증진행위)

  • Yu, Su Jeung;Lee, Kyung-Sook;Kim, Joo Hyun;Lim, Kyung Choon;Park, Jin Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.16 no.1
    • /
    • pp.60-68
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the health promotion behavior according to body mass index (BMI) and self-perception of obesity in female nursing students. Methods: The subjects of this study were 143 female nursing students. The data were collected using a questionnaire about health, life style and general characteristics. BMI, waist and hip circumference, flexibility, and gripping force were measured. Data were analyzed with SPSS/WIN 20.0 program. Results: Subjects were divided into three groups including true overweight (16.1%), false overweight (29.2%), and true normal weight group (43.5%) based on their BMI and self-perception about obesity. There were significant differences among the three groups in alcohol consumption, self-confidence on the accomplishment of desired weight in a year, gap between actual and desired weight, waist circumference, waist-hip ratio, and interpersonal relationship. The true normal weight group shows significantly higher interpersonal relationships than the true overweight group. Conclusion: It was determined that special strategies for increasing appropriate self-perception about obesity and health behaviors for female nursing students should be developed.

Development and Evaluation of Protective Gloves for Rose Farmers (장미재배 작업자를 위한 보호장갑의 개발과 평가)

  • Chae, Hye-Seon;Kim, Sung-Cheol;Lee, Kyung-Suk;Kim, Hyo-Cher;Kim, Doo-Hi;Park, Soon-Jee
    • The Korean Journal of Community Living Science
    • /
    • v.23 no.2
    • /
    • pp.137-144
    • /
    • 2012
  • This study was undertaken to develop protective gloves for rose farmers who work on thorny plant in Korea. Prototype of protective gloves was designed and evaluated in terms of thermal comfort and mobility. Gloves were made with arm protectors attached to them, so that they could protect the lower part of arms, and rubber bands were inserted into the arm protectors for them not to slip down. The bending part of each finger was punched in order to give ventilation. Also, the bending parts of the fingers in the upper and lower part of gloves were inserted with sponges and were stitched together in order to enhance gripping movement. According to compared evaluation of the developed gloves and the existing gloves, temperature inside the gloves didn't show any significant differences, but humidity inside the gloves showed significant differences. There were significant differences in terms of comparison of objective mobility, that is, pegboard run-time and grip power, from statistical aspects. In addition, a comparison of subjective discomfort showed significant differences and so the suitability of developed gloves was proved.

Development of Two-Finger Force Measuring System to Measure Two-Finger Gripping Force and Its Characteristic Evaluation (단축 힘센서를 이용한 두 손가락 잡기 힘측정장치 개발 및 특성평가)

  • Kim, Hyeon-Min;Shin, Hi-Suk;Yoon, Joung-Won;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.172-177
    • /
    • 2011
  • Finger patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers(thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). At present, most hospitals have used a thin plastic-plate for measuring the two-finger grasping force, and we can only judge that they can grasp the plate with their two-finger through it, because the plate can't measure the two-finger grasping force. But, recently, the force measuring system for measuring two-finger grasping force was developed using three-axis force sensor, but it is very expensive, because it has a three-axis force sensor. In this paper, two-finger force measuring system with a one-axis force sensor which can measure two-finger grasping force was developed. The one-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP(Digital Signal Processing). Also, the grasping force test of men was performed using the developed two-finger force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods, and the system can be used for measuring two-finger grasping force.

Development of a 6-axis robot′s finger force/moment sensor for stable grasping of an unknown object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.54-61
    • /
    • 2004
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces $F_x$(x-direction force), $F_y$and $F_z$, and moments $M_x$ (x-direction moment), $M_y$ and $M_z$ simultaneously, for stable grasping of an unknown object. In order to safely grasp an unknown object using the robot's gripper, the force in the gripping direction and the force in the gravity direction should be measured, and the force control should be performed using the measured forces. Also, the moments $M_x$, $M_y$ and $M_z$ to accurately perceive the position of the object in the grippers should be detected. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces $F_x$, $F_y$ and $F_z$, and moments $M_x$ $M_y$ and $M_z$ simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces $F_x$, $F_y$ and $F_z$, and moments $M_x$ $M_y$ and $M_z$ simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of the fabricated sensor was performed, and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object using the sensors was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor can be used for robot's gripper.

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

Segmental Bioelectrical Impedance Analysis(SBIA) for Determining Body Composition (부위별 생체 전기 임피던스법을 이용한 체성분 분석에 관한 연구)

  • 차기철;손정민;김기진;최승훈
    • Korean Journal of Community Nutrition
    • /
    • v.2 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • A new bioelectrical impedance method has been developed and evaluated. The electrodes; were made of stainless steel and electrical interfaces were created by an upright subject gripping hand electrodes and stepping onto foot electrodes. Eight tactile electrodes were in contact with surfaces of both hands and feet; thumb, palm and fingers, front sole, and rear sole. Automatic on-off switches were used to change current pathways and to measure voltage differences for target segments. Segmental body resistances and whole body resistance(RWHOLE)were measured in 60 healthy subjects. Segmental resistances of right arm(RRA), left arm(RLA), trunk(RT), right leg(RRL) and left leg(RLL)were310.0$\pm$61.6$\Omega$, 316.9$\pm$64.6$\Omega$, 25.1$\pm$3.4$\Omega$, 236.8$\pm$31.2$\Omega$ and 237.6$\pm$30.4$\Omega$, respectively. Individual segmental impedance indexes(Ht2/RRA, Ht2/RT, and Ht2 /RLA) were closely related to lean body mass(LBM)as measured by densitometry ranged from r=0.925 to 0.960. Ht2/(RRA+RT+RLA) predicted LBM slightly better(r=0.969) than the traditional index, Ht2/RWHOLE(r=0.964), supporting the accuracy of the segmental measurement. A multiple regression equation utilizing Ht2/RRA, Ht2/RT and Ht2/RRL predicted LBM with r=0.971. Ht2/RRA term of the regression contributed to more than 40$\%$ of the LBM prediction, indicating that lean mass of arm represented whole body LBM more closely than other body segments. The new bioimpedance method was characterized by upright posture, eight tactile electrodes, segmental measurements and utilization of electronic switches in comparison with the traditional method. The measurement with this new method was extremely reproducible, quick and easy to use.

  • PDF

Evaluation of Gender Effect in Various Pliers' Grip Spans for Maximum Isometric Grasping Tasks

  • Kong, Yong-Ku;Kim, Dae-Min;Park, Ji-Soo;Lee, Sung-Yong;Choi, Kyeong-Hee;Kim, Kyung Ran
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.553-563
    • /
    • 2014
  • Objective: The purpose of this study was to evaluate the effect of gender (male, female) and grip spans (45, 50, 60, 70, 80mm) on total grip strength, resultant force, finger force and subjective discomfort rating. Background: In order to prevent musculoskeletal disorders, studies of hand tools need to be preceded based on grip strength, finger force, and subjective discomfort rating. However, experimental apparatus using tools such as pliers that reflect the actual work place was almost non-existent. Method: Fifty-Two (26 males and 26 females) participants were recruited from the student population. In this study, a pair of revised pliers, which can change grip span from 45 to 80mm was applied to estimate total grip strength, resultant force and individual finger forces. All participants were asked to exert a maximum grip force with three repetitions, and to report the subjective discomfort rating for five grip spans of pliers (45, 50, 60, 70, 80mm). Results: There were significant differences of total grip strength, resultant force, individual finger forces and subjective discomfort rating according to grip span. The lowest total grip strength was obtained from the grip span of 80mm for both genders. For resultant force, the highest resultant force was exerted at grip spans of 50, 60 and 70mm for females and 50 and 60mm for males. The lowest subjective discomfort rating was observed in the 50mm for both genders. Conclusion: Based on the result, 50mm and 60mm grip spans which provide the highest force and lowest discomfort rating might be recommendable for the male and female pliers users. Application: The findings of this study can provide guidelines on designing a hand tool to help to reduce hand-related musculoskeletal disorders and obtain better performance.

Optimal Grip Span of A-type Pliers in a Maximum Gripping Task

  • Kong, Yong-Ku;Jung, Jin Woo;Kim, Sangmin;Jung, Heewoong;Yoo, Hakje;Kim, Dae-Min;Kang, Hyun-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.511-516
    • /
    • 2013
  • Objective: The objective of this study is designing an optimal hand tool through maximum grip force study accordance to the hand grip span. Background: In order to prevent musculoskeletal diseases, studies on hand tool design are proceeding based on grip strength, finger force, and contribution of individual finger force on total grip strength. However, experimental apparatus using a tool that is actually used in work place was almost non-existent. Method: 19 males were participated in an experiment. Using the load cell inserted real plier, finger force, grip strength, and subjective discomfort rate of both hands (dominant and non-dominant) were measured in 5 different hand grip span(45mm, 50mm, 60mm, 70mm, and 80mm). Results: There was significant difference(p<0.001) of total grip strength, individual finger force and subjective discomfort rating according to various hand grip span(45, 50, 60, 70, and 80mm). Also, statistically significant different(p<0.001) was shown between the dominant hand and non-dominant hand. In addition, individual finger force in maximum grip was in order of middle finger, ring finger, index finger, and little finger. Conclusion: Optimal grip span of pliers that exerting maximum grip strength is 50~60mm. Application: This finding is expected to be used for designing proper pliers.