• Title/Summary/Keyword: gripper

Search Result 201, Processing Time 0.039 seconds

Design, Fabrication, and Performance Evaluation of a Sensorized Superelastic Alloy Microrobot Gripper (센서화된 초탄성 마이크로그리퍼의 설계, 제작 및 성능평가)

  • Kim, Deok-Ho;Kim, Byung-Kyu;Kang, Hyun-Jae;Kim, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1772-1777
    • /
    • 2003
  • This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate super-elastic alloy based micro gripper. It is tested to present improvement of mechanical performance. For integration of force sensor on the micro gripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of force sensor integrated micro gripper are experimentally carried out. The force sensor integrated micro gripper is applied to perform fme alignment tasks of micro opto-electrical components. It successfully supplies force feedback to the operator through the haptic device and plays a main role in preventing damage of assembly parts by adjusting the teaching command.

Slip Considered Design and Analysis Pincers-type Gripper for Seizing Heavy-weighted Cylindrical Objects (고중량의 원통형 작업대상물 파지용 집게형 그리퍼의 슬립 조건과 이를 반영한 설계 및 해석)

  • Choi, Jung Hyun;An, Jinung;Lee, Sang Mun;Jang, Myeong Eon
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.193-199
    • /
    • 2015
  • This paper dealt with a pincers-type gripper being able to grip a heavy-weighted cylindrical object having various size with itself. This gripper should be designed to seize the objects without any change of jaw shape. Grasping achieved equilibrium after the object slipped on the jaw while grasping it. To cope with this situation, we suggested the slip considered gripper design procedure based on grasping equilibrium. The obtained slip condition can provide a limit friction coefficient depending on the contact angle when initiating contact between jaw and object. Consequently, the gripping force and the required actuating force can be calculated. In order to verify the proposed slip condition, the simulations were performed using a dynamic software.

A Gripping System Capable of Simultaneous Implementation of Pneumatic Gripper and Vacuum Gripper Using a Single Pump (단일 펌프를 이용하여 공압 그리퍼와 진공 그리퍼의 동시 구현이 가능한 그리핑 시스템의 개발)

  • Tae Hwa Hong;Jae-Bok Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.456-462
    • /
    • 2023
  • In recent years, the use of robot arms has increased rapidly in both industrial and service applications. Unlike production sites, where only one type of gripper is used for productivity, service sites often use a tool changer to replace fingered grippers or vacuum grippers to cover various objects to be grasped. To this end, a tool changer-based pneumatic grasping system was developed in this study. In order to simultaneously use a positive pressure-based pneumatic gripper and a negative pressure-based vacuum gripper, a small vane pump capable of generating positive and negative pressures depending on the direction of rotation was developed. Experiments with actual prototypes have shown that the pneumatic system based on the developed vane pump can effectively realize both pneumatic grippers and vacuum grippers.

A Study on Six Sigma Robust Design of Gripper Part for LCD Transfer System (식스 시그마 기반 LCD이송장치의 Gripper부 강건설계에 관한 연구)

  • Chung, W.J.;Jung, D.W.;Kim, S.B.;Yoon, Y.M.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.65-71
    • /
    • 2006
  • This paper presents the robust design of gripper part for a high-speed LCD(Liquid Crystal Display) transfer system. In this paper, the $1^{st}$ DOE(Design of Experiment) is conducted to find out main-effect factors for the design of gripper part. Thirty-six analysis are performed using $ANSYS^{(R)}$ and their results are statistically analyzed using $MINITAB^{(R)}$, which shows that the factors, i.e., First-width, Second-width, Rec-width, and thickness of gripper part, are more important than other factors. The main effect plots shows that the maximum deflection and mass of gripper part are minimized by increasing First-width, Second-width, Rec-width and thickness. The $2^{nd}$ DOE is conducted to obtain RSM(Response Surface Method) equation. The CCD(Central Composite Design) technique with four factors is used. Optimum design is conducted using the RSM equation. Genetic algorithm is used for optimal design. Six sigma robust design is conducted to find out a guideline for control range of design parameter. To obtain six sigma level quality, the standard deviations of design parameters are shown to be controlled within 5% of average design value.

Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object (미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

Development of a 6-axis robot's finger force/moment sensor for making a robot's gripper (로봇의 그리퍼 제작을 위한 6 축 로봇손가락 힘/모멘트센서의 개발)

  • Kim, Gab-Soon;Lee, Hun-Doo;Park, In-Chul;Son, Young-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.758-763
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for making a robot's gripper. In order to safely grasp and unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it.

  • PDF

Valuation and Improvement on Micro-gripper System by Axiomatic Design (공리적 설계를 이용한 마이크로 그립퍼 시스템의 평가 및 개선)

  • Jeon Jong Hyup;Park Jong Kyu;Moon Won Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.164-169
    • /
    • 2005
  • The micro-gripper system is one of the systems that should be improved in the respect of performance for practical usage. In the previous works, the important issues are considered and presented using axiomatic design approach. In this paper, the functional requirements and design parameters are evaluated in order to improve the performance and efficiency of the system. The evaluation is a very difficult task since many variables are related to the outcomes. To provide a basis for correct design decisions, axiomatic design principles have been advanced. Since the framework of axiomatic design makes design issues easier to understand when they are analyzed, we used those as an evaluation tool. The object of the system is to handle micro-size parts. Main device is a micro-gripper using two bender-typed and one stack-typed PZTs as actuators. And it has three tips made of tungsten wires fur holding function. Also the system must satisfy other functional requirements for appropriate handling performance. The results of this study show design improvements of micro-gripper system such as structural change of gripper, additional element, and integration of physical parts. Axiomatic design guides presented suitable design parameters corresponding to functional requirements and made the design elements improve through diagrams of whole system.

A Study on a Precise Control of Position and Orientation of Robot Gripper for Forming Parts Handling in High Temperature (고열 단조부품 핸들링을 위한 로봇 그리퍼의 방위 및 포지션 정밀제어에 관한 연구)

  • Jeong, Yang-Keun;Kim, Mim-seong;Jo, Sang-Young;Won, Jong-Beom;Won, Jong-Dae;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • In this paper, we describe a new approch to control method of a four joints-robot gripper for the purpose of parts assemblying. The robot gripper is specifically modeled by using a 3D CAD program (ANSYS), considering artificial grippers, and then the proposed control method is illustrated through the dynamic simulation tool (Adams). Each gripper finger is individually controlled to be located at the optimal positions where the maximal joint torque can be calculated. To verified the effectiveness of the proposed control method, we proposed two cases for the reference position of gripper. By comparing the control performance of two method, the performance of the proposed control method was verified.

A Study on Concept Design of Customized Gripper for Assembly Process of IT Products (IT 제품의 조립 공정 맞춤형 그리퍼 개념 설계에 관한 연구)

  • Kim, Hyeon-Guk;Hwang, Soon-Woong;An, Bo-Young;Heo, Jun-Hyung;Choi, Youn-Sung;Shin, Kyoo-Sik;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.644-652
    • /
    • 2018
  • This paper describes the conceptual design of a customized gripper for the assembly process of IT products, which has a relatively short and regular product replacement cycle. The grippers that are used in the manufacturing field are mostly composed of one to two degrees of freedom and they can only handle one object, not multiple ones. Cost is also an important factor. If it were possible to develop a gripper suitable for the assembly process quickly and easily, some of the difficulties involved in its automation caused by the frequent changes of product and process could be solved. The assembly process utilized for this research is defined and described as the procedure and method of the process analysis due to the confidentiality of the manufacturer. We used an axiomatic design to derive the functional requirements and design parameters of the gripper used for the tablet PC assembly process. We proposed a design method for the conceptual design of the gripper by determining these parameters. For the feasibility study, a specific process was selected and the progress of the gripper design was described as an example. Although there have been studies on the design guidelines for grippers, their considerations are too general and their degree of freedom is too high. This paper defines the function of the gripper based on the assembly process of the IT products, which allows their production to be streamlined and automated. In this research, we attempted to produce a design that reflects the assembly process, not just one that enables objects to be held.

FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory

  • Jahangiri, Reza;Jahangiri, Hadi;Khezerloo, Hamed
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1541-1555
    • /
    • 2015
  • In this paper mechanical behavior of the functional gradient materials (FGM) micro-gripper under thermal load and DC voltage is numerically investigated taking into account the effect of intermolecular forces. In contrary to the similar previous works, which have been conducted for homogenous material, here, the FGM material has been implemented. It is assumed that the FGM micro-gripper is made of metal and ceramic and that material properties are changed continuously along the beam thickness according to a given function. The nonlinear governing equations of the static and dynamic deflection of microbeams have been derived using the coupled stress theory. The equations have been solved using the Galerkin based step-by-step linearization method (SSLM). The solution procedure has been evaluated against available data of literature showing good agreement. A parametric study has been conducted, focusing on the combined effects of important parameters included DC voltage, temperature variation, geometrical dimensions and ceramic volume concentration on the dynamic response and stability of the FGM micro-gripper.