• Title/Summary/Keyword: grinding media

Search Result 28, Processing Time 0.034 seconds

Reserarch for Possibility of ELID Grinding of Hard Disk Glass (HDD용 Glass Disk의 ELID 연삭 성능 평가)

  • 김경년;김영태;박철우;이용철;대삼정;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.161-168
    • /
    • 2000
  • In this paper, machining characteristics of glass for HDD media are researched. Nowadays HDD media are used globally as a data storage device. In generally, it is machined by the lapping. But the lapping process time is long and the productivity is low. In this reason, 1 examined the possibility of ELID grinding of glass fur HDD media. If the machining process of HDD media can be changed to ELID grinding, a product cost will be largely saved. The machines used in this experiment were a special rotary type grinder and a normal rotary grinder. The one has an air bearing spindle, the other has not. Experimental results show the possibility of highly efficient grinding and mirror surface can be achieved by the ELID grinding.

  • PDF

A Comparative Study for Grinding Media Behavior and DEM Simulation at Actual Grinding Zone on a Traditional Ball Mill (매체형 전동밀의 실제 분쇄장에서 분쇄매체의 거동과 DEM 시뮬레이션의 비교연구)

  • Bor, Amgalan;Jargalsaikhan, Battsetseg;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.804-811
    • /
    • 2019
  • This study was performed the real motion and DEM simulation of ball motion using three different types of grinding media with different size and materials in media formation for optimization of process conditions in a traditional ball mill (media ball mill). In the simulation, the rotational speed of the mill, the material of the medium, the velocity of the medium, and the coefficient of friction between the media and the wall of pot were fixed into the actual experimental conditions. The motion of various kinds of grinding media was quantitatively measured by setting the grinding zone defined in the present study on the photographs taken and the snapshot images analyzed in the simulation. In addition, we observed the quantitatively measured value and the changed morphology of the sample and examined the correlation. Therefore, it is suggested to optimize the grinding media which has the greatest influence on the grinding zone under specific experimental conditions.

Aspect Ratio Behavior of Grinding Particles with Variation of Particle Size by Wet Grinding (습식분쇄에 의한 입자크기 변화에 따른 분쇄입자의 종횡비 거동)

  • Choi, Jin Sam
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.223-230
    • /
    • 2020
  • As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 mm media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 ㎛ are shifted to submicron size, D50 ~0.6 ㎛ after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

Particle Morphology Change and Quantitative Input Energy Variation during Stirred Ball Milling Process by DEM Simulation on Various Experimental Conditions (교반볼밀을 이용한 밀링공정에서 각종실험조건에 따른 구리분말의 입자형상 변화 및 DEM 시뮬레이션에 의한 정량적 에너지 변화)

  • Bor, Amgalan;Batjargal, Uyanga;Jargalsaikhan, Battsetseg;Lee, Jehyun;Choi, Heekyu
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.148-158
    • /
    • 2018
  • This study investigated the effect of the grinding media of a ball mill under various conditions on the raw material of copper powder during the milling process with a simulation of the discrete element method. Using the simulation of the three-dimensional motion of the grinding media in the stirred ball mill, we researched the grinding mechanism to calculate the force, kinetic energy, and medium velocity of the grinding media. The grinding behavior of the copper powder was investigated by scanning electron microscopy. We found that the particle size increased with an increasing rotation speed and milling time, and the particle morphology of the copper powder became more of a plate type. Nevertheless, the particle morphology slightly depended on the different grinding media of the ball mill. Moreover, the simulation results showed that rotation speed and ball size increased with the force and energy.

Analysis of Particle Morphology Change and Discrete Element Method (DEM) with Different Grinding Media in Metal-based Composite Fabrication Process Using Stirred Ball Mill (교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석)

  • Batjargal, Uyanga;Bor, Amgalan;Batchuluun, Ichinkhorloo;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.456-466
    • /
    • 2017
  • This work investigated the particle morphology change to difference in milling media in a metal based composite fabrication process using a stirred ball mill with ball behavior of DEM simulation. A simulation of the three dimensional motion of grinding media in the stirred ball mill for the research of grinding mechanism to clarify the force, kinetic energy, and medium velocity of grinding media were calculated. In addition, the rotational speed of the stirred ball mill was changed to the experimental conditions for the composite fabrication, and change of the input energy was also calculated while changing the ball material, the flow velocity, and the friction coefficient under the same conditions. As the rotating speed of the stirred ball mill increased, the impact energy between the grinding media to media, media to wall, and media and the stirrer increased quantitatively. Also, we could clearly analyze the change of the particle morphology under the same experimental conditions, and it was found that the ball behavior greatly influences in the particle morphology changes.

Comparative Study for the Standardization of Grinding Equipment During Dry Grinding Process by Various Grinding Mills (다양한 매체형 분쇄기를 이용한 건식 분쇄공정에서 장비의 표준화를 위한 분쇄실험의 비교 연구)

  • Bor, Amgalan;Sakuragi, Shiori;Lee, Jehyun;Choi, Heekyu
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.305-316
    • /
    • 2015
  • The study of grinding behavior characteristics on the metal powders has recently gained scientific interest due to their useful applications to enhance advanced nano materials and components. This could significantly improve the property of new mechatronics integrated materials and components. So, a new evaluation method for standardizing grinding equipment and a comparative study for the grinding experiment during the grinding process with various grinding mills were investigated. The series of grinding experiments were carried out by a traditional ball mill, stirred ball mill, and planetary ball mill with various experimental conditions. The relationship between the standardization of equipment and experimental results showed very significant conclusions. Furthermore, the comparative study on the grinding experiment, which investigated changes in particle size, particle morphology, and crystal structure of materials with changes in experimental conditions for grinding equipment, found that the value of particle size distribution is related to the various experimental conditions as a revolution speed of grinding mill and media size.

Component and surface residue observation of barrel finishing media for grinding dental resins (치과용 레진 연마를 위한 바렐 연마재의 성분 분석 및 표면 잔류물 관찰)

  • Jung, An-Na;Park, Yu-Jin;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.43 no.4
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: This study aimed to produce resin prosthetics using a dental barrel finishing machine. For dental resin grinding, the ingredients of the barrel finishing media were analyzed, and surface residues of the resin were observed. Methods: Two types of barrel finishing media for dental resin grinding were tested. Specimens were made from thermal polymerized, auto polymerized, and photopolymerized resins. Finishing media were analyzed through energy-dispersive X-ray spectroscopy (EDS) component analysis and inductively coupled plasma-optical emission spectrometry (ICP-OES) component analysis. Then, the prepared specimen was barrel finished for 25 minutes using two types of barrel finishing media, and scanning electron microscope was photographed to observe the surface residues. Results: As a result of EDS component analysis, both types of finishing media were analyzed for the components of C, O, Zr and Al elements, and industry media (IM) was further analyzed for the components of Si and Mg elements. In the ICP-OES component analysis, Cd and As, which are harmful elements, were detected in IM, and no harmful elements were detected in manufacturing media (MM). Because of observation of surface residues, no residues were observed in the three types of resin specimens that were barrel finished with two types of finishing media. Conclusion: Surface residue wasn't observed on the specimens polished using two types of finishing media. However, in IM, Cd and As, which are harmful elements, were detected, making it inappropriate for clinical use. In MM, harmful elements were not detected; therefore, clinical use will be possible.

Grain Size Analysis by Hot-Cooling Cycle Thermal Stress at Y-TZP Ceramics using Full Width at Half Maximum(FWHM) of X-ray Diffraction (X-ray 회절의 반치전폭(FWHM)을 이용한 Y-TZP세라믹스에서 반복 열응력에 의한 입계크기 분석)

  • Choi, Jinsam;Park, Kyu Yeol;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.264-270
    • /
    • 2019
  • As a case study on aspect ratio behavior, Kaolin, zeolite, $TiO_2$, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ${\sim}6{\mu}m$ are shifted to submicron size, D50 ${\sim}0.6{\mu}m$, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

A study on the Beneficiation for Magnesite by the Grinding Characteristic of Rock Forming Minerals (조암광물의 분쇄특성을 이용한 마그네사이트 정제기술 연구)

  • Kim, Sang-Bae;Park, Hyung-Kyu;Kim, Wan-Tae;Kim, Yun-Jong
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.606-611
    • /
    • 2007
  • This study was conducted to beneficiation of magnesite by dry grinding and air classification. The raw ore was ground in a ball mill and pin mill controlled with grinding time and linear velocity of grinding media and fractionated in an air classifier. Pin mill is more efficient than the ball mill for liberation. As a result, the MgO grade of concentrate was 47.1% with recovery of 51.51% for classified with 3,000rpm of air classifier for ground at 13,000rpm in pin mill.

Synthesis of 100 nm BaTiO3 by Solid-state Reaction (고상법에 의한 100 nm BaTiO3 분말의 합성)

  • Kim, Jung-Hwan;Jung, Han-Seong;Cho, Joon-Yeob;Hong, Jeong-Oh;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.170-174
    • /
    • 2009
  • $BaTiO_3$ powder was synthesized by the solid-state reaction of fine $BaTiO_3$ and $TiO_2$ raw materials. Fine grinding media of 50 and 300 microns were used for obtaining fine particulate mixture of $BaTiO_3$ and $TiO_2$ with high homogeneity. Effect of the size of grinding media on the synthesis mechanism of $BaTiO_3$ was discussed on the basis of the particulate morphology and thermogravimetry data for the mixture powders. By using the finer grinding media, $BaTiO_3$ was formed at the lower temperature and the particle size with the relatively narrower distribution could be obtained. $BaTiO_3$ powder with the average size of 100 nm was synthesized by the solid reaction in vacuum atmosphere.