• Title/Summary/Keyword: grillage model

Search Result 17, Processing Time 0.021 seconds

Impact study for multi-girder bridge based on correlated road roughness

  • Liu, Chunhua;Wang, Ton-Lo;Huang, Dongzhou
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-272
    • /
    • 2001
  • The impact behavior of a multigirder concrete bridge under single and multiple moving vehicles is studied based on correlated road surface characteristics. The bridge structure is modeled as grillage beam system. A 3D nonlinear vehicle model with eleven degrees of freedom is utilized according to the HS20-44 truck design loading in the American Association of State Highway and Transportation Officials (AASHTO) specifications. A triangle correlation model is introduced to generate four classes of longitudinal road surface roughness as multi-correlated random processes along deck transverse direction. On the basis of a correlation length of approximately half the bridge width, the upper limits of impact factors obtained under confidence level of 95 percent and side-by-side three-truck loading provide probability-based evidence for the evaluation of AASHTO specifications. The analytical results indicate that a better transverse correlation among road surface roughness generally leads to slightly higher impact factors. Suggestions are made for the routine maintenance of this type of highway bridges.

Structural Responses of Composite-girder Bridges Due to Design Live Loads using Distribution Factor Method and Grillage Analysis (횡분배계수법과 평면격자 해석법을 이용한 합성거더교의 설계활하중 응답연구)

  • Jung, Myung-Rag;Yang, Hee-Sun;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.131-138
    • /
    • 2015
  • In this paper, the modified live-load and designed formula are studied according to the fact the highway bridge design specifications are recently revised. The two examples for composite steel plates and PSC girder bridges are studied. The envelope is analyzed with the finite element models and lateral load distribution method applying the existing highway bridge specification(2010), the newly revised highway bridge specification(2015) and AASHTO LRFD. In case of composite steel plates, length changes between spans are studied, and in case of PSC girder. changes of the number of cross-beams and spans, and span-lengths, are analyzed.

Introduction to a CAE Development Based on Simplified Grillage Model for Ship Docking Analysis (선박 도킹 시 간이화된 격자 모델을 사용한 효과적인 CAE 시스템 개발 사례)

  • Kim, Seong-Chan;Yu, Cheol-Ho;Lee, Jang-Hyeon;Lee, Gyeong-Seok
    • Computational Structural Engineering
    • /
    • v.22 no.4
    • /
    • pp.89-94
    • /
    • 2009
  • 최근에 선박의 도킹해석은 3차원 전선 구조 해석을 통해 수행되어 왔으나 도킹해석 모델을 구성하는데 많은 시간과 노력이 필요하였다. 전선구조해석 모벨을 만들기 위해 필요한 선박구조 도면이 완성되기 전인 초기 설계단계에서 도킹시 반목배치를 조기에 확정하고, 구조 안정성을 확보하기 위한 노력이 요구되어 왔기 때문에 간이화된 도킹 해석 프로그램을 개발하게 되었다. 2차원 격자구조를 이용한 도킹해석기법을 통해 얻은 반목에서의 지지력이 3차원 전선해석모델을 사용하여 얻은 반목에서의 반력 결과와 비교해 타당한 결과를 보여 주고 있음을 확인하였다. 간이화된 도킹용 해석 프로그램을 개발하였으며, 다음과 같은 기능을 갖추어 사용자가 쉽게 격자 구조 모델을 생생하고 해석을 수행할 수 있도록 구성하였다. 향후 각 요소의 단면 특성치를 자동으로 산정하는 기능이 추가되어야 한다. 그리고 부유식 도크(Floating dock)에서의 도킹해석은 본 개발의 대상이 된 건식 도크(Dry dock)에서의 경우와 다른 고려사항이 추가되어야 하기 때문에 향후 추가적인 연구와 개발을 통해 새로운 기능으로 포함될 것이다.

Analysis Models for Automatic Design of Orthotropic Steel Deck Bridges (자동화설계를 위한 강상판교의 해석모델)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.363-372
    • /
    • 1999
  • This study proposes useful analysis models for automatic design of orthotropic steel deck bridges. For the selection of the best or the most proper analysis model this paper presents various analysis models based on grillage model, which are then compared with each other in terms of reliability of analysis, computing time and effectiveness. Also the selected analysis models are compared with Pelikan-Esslinger method well-known for orthotropic steel deck bridge analysis. The effectiveness of proposed analysis models is demonstrated by means of a numerical example that is a three-span continuous (60m+80m+60m=200m) orthotropic steel-box girder bridge.

  • PDF

The use of eccentric beam elements in the analysis of slab-on-girder bridges

  • Chan, Tommy H.T.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.85-102
    • /
    • 1999
  • With the advent of computer, the finite element method has become a most powerful numerical method for structural analysis. However, bridge designers are reluctant to use it in their designs because of its complex nature and its being time consuming in the preparation of the input data and analyzing the results. This paper describes the development of a computer based finite element model using the idea of eccentric beam elements for the analysis of slab-on-girder bridges. The proposed method is supported by a laboratory test using a reinforced concrete bridge model. Other bridge analytical schemes are also introduced and compared with the proposed method. The main aim of the comparison is to prove the effectiveness of the shell and eccentric beam modelling in the studies of lateral load distribution of slab-on-girder bridges. It is concluded that the proposed finite element method gives a closer to real idealization and its developed computer program, SHECAN, is also very simple to use. It is highly recommended to use it as an analytical tool for the design of slab-on-girder bridges.

A Study on the Ultimate Strength Behavior according to Modeling Range at the Stiffened Plate (선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구)

  • Park Jo-Shin;Ko Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.137-141
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of modeling range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

A Study on the Ultimate Strength Behavior according to Modeling Range of the Stiffened Plate (선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Park, Sung-Hyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.35-39
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used On this study, to investigate effect of modeling range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of merchant ship structures. For FHA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF