• Title/Summary/Keyword: grid connection

Search Result 307, Processing Time 0.023 seconds

An Assessment on Harmonics Effect in Customer and the Distributed Power System during Grid Connection of Residential Fuel Cell System (가정용 연료전지 시스템의 계통연계 시 수용가 및 배전계통에서의 고조파 영향 평가)

  • Park, Chan-Eom;Jung, Jin-Soo;Han, Woon-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1280-1285
    • /
    • 2011
  • Recently, due to the use of fossil fuels for electric power production, carbon emissions increased excessively. Thereby, in order to replace fossil fuels, many studies about fossil fuels such as solar and fuel cell energy source are progressing. Fuel cell system has high energy conversion efficiency. Also, fuel cell system is environmentally friendly system because the carbon emission is almost not occur. Therefore, the fuel cell system is considered as the core technology of in the fields of the future energy and environmental. Fuel cell system has an effect on distribution power system because another power source of other than large power plants. So, fuel cell system can be degradation reason of power quality in the power system. In this paper, we constructed the system for an assessment on harmonics effect. The system is composed with power source, harmonics generation and linear load, fuel cell system. we also performed assessment on harmonics effect in customer and the distributed power system during grid connection of residential fuel cell system. An assessment cases are divided into three. A Case 1 is state that residential load and fuel system are connected to grid, Case 2 is state that residential load and harmonics load are connected to grid, and Case 3 is state that all loads are connected to grid. As a output of fuel cell system is increase, analysis results based on assessment system showed that power quality became more aggravation as effect of harmonics.

Variable Gain Current Controller Considering Inductance Variations after the Connection of DFIG Stator to the Grid (DFIG 고정자의 계통연계시 인덕턴스 변동을 고려한 가변이득 전류제어기)

  • Shin, Soo-Cheol;Yu, Jae-Sung;Hong, Jung-Ki;Suh, In-Young;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.293-298
    • /
    • 2009
  • This paper presents a variable gain current control algorithm for the stabilized grid connection between the grid and a doubly fed induction(DFIG) as a wind power generator. The performance of a RSC current controller depends highly on accurate machine parameters, and especially requires a fast and robust response regardless of the disturbances such as voltage sag. However, parameter variations of a DFIG occur at the point of grid connection, which affects the current controller gains based on DFIG parameters after a DFIG is connected to the grid. Thus, performance degrades when actual machine parameters depart from values used in the control system. In the proposed algorithm, current controller gains of the rotor side converter(RSC) are changed after a DFIG is connected to the grid. The simulation results and experimental results for a 750kW are shown to illustrate the feasibility of the proposed algorithm.

Three-Parallel System Operation and Grid-Connection Technique for High-Power Wind Turbines using a PMSG (PMSG를 이용한 풍력 발전 시스템의 3병렬 운전과 계통 연계 기술)

  • Lee, Sang-Hyouk;Jung, Hea-Gwang;Lee, Kyo-Beum;Choi, Se-Wan;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.296-308
    • /
    • 2010
  • This paper proposes a design of the three-parallel converter system and grid-connection technique for a PMSG based wind turbine systems. The back-to-back converter of the PMSG based wind turbine system is directly connected to the grid so that both the power devices and the filters are needed to have large power ratings. The three-parallel converter configuration can reduce the required power ratings of the devices and filters. However, the three-parallel converter can cause circulating currents. These circulating currents can be suppressed by sellecting proper inner inductance at each leg. An LCL filter design is used to meet the THD regulations. The latent resonance caused by the LCL filter is compensated by an active damping method without additional loss. The decline of the power quality caused by the unbalanced and distorted grid voltages is also compensated with an additional compensation algorithm. The simulation and experimental results show that the proposed system and compensation methods are effective for the wind turbine systems.

A Study on LCL Filter Design and EMTP-RV Simulation for Grid-connected Three Phase Inverter (계통 연계 3상 인버터를 위한 LCL 필터 설계 및 EMTP-RV 시뮬레이션 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, the design methodology of LCL filter for grid-connected three-phase inverter was studied. First, the advantages and disadvantages of applying typical filter structures as a filter for grid connection of a three-phase inverter were analyzed. Next, filter design methodologies for grid connection of a three-phase inverter were analyzed, and an effective filter design methodology was determined to satisfy the harmonic requirements in grid connection. In order to verify the effectiveness of the design methodology, EMTP models such as a three-phase inverter, a three-phase LCL filter, and a performance evaluation system to evaluate the performance of the designed filter were developed using EMTP-RV. Next, an LCL filter was designed for an application example of a three-phase inverter, and the waveforms of the output voltage and outage current of the three-phase inverter were checked through EMTP-RV simulation work. In particular, the validity of the design methodology was verified by confirming that the magnitude of the current ripple was reduced to a limited magnitude through waveform analysis of the output current.

Analysis of fault current in offshore wind farm ccording to the grid connection method (해상풍력 발전단지의 전력망 연계방식에 따른 고장전류 분석)

  • Ahn, Jin-Hong;Kim, Eel-Hwan
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.691-698
    • /
    • 2020
  • The installation cost or the magnitude of the fault current varies depending on the grid connection method of the offshore wind farm. Therefore, there is a need for an efficient power grid connection method considering the capacity and location of the complex. In particular, most power cables in offshore wind farms use 3-core considering cost and efficiency. In the event of a failure such as a short circuit, the entire cable must be replaced, which can lead to significant losses in terms of cost, considering repair costs and turbine downtime. Therefore, in this paper, a radial, ring, and molding method is introduced into a 100 MW wind farm to be installed at Jeju offshore, and a three-phase short circuit failure is performed using a PSCAD/EMTDC program to perform computer analysis. I would like to propose a suitable power grid connection method.

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Simulation for voltage fluctuations of Grid-connected Wind Turbine Generators by Simulink (Simulink에서 풍력발전 연계시스템의 전압변동 시뮬레이션)

  • Ahn, Duck-Keun;Ho, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1389-1391
    • /
    • 2003
  • The development of wind turbine power generation has grown during the past ten years. An important question, when installing wind turbines with the generator connected directly to the grid, is holt much the voltage quality will be affected by the uneven power production and by the connection of the wind turbine to the grid. This paper presents the voltage fluctuation of grid-connected WTG(wind turbine generators) by MATLAB/Simulink.

  • PDF

New VFT Grid-Connection System Including Reactive Power Compensation (무효전력 보상을 포함하는 새로운 회전형 변압기 계통 연계 시스템)

  • Oh, Jeong-Sik;Park, Tae-Sik;Kim, Sung-Hwan;Kwak, No-Hong;Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.143-150
    • /
    • 2019
  • The back-to-back HVDC asynchronous grid interconnect technology has problems of high harmonic generation, high cost, and low scalability. To solve this problem, research on asynchronous grid interconnect technology using VFT is actively being conducted. However, the reactive power due to the inductance component of the VFT is generated, and the problem of additional installation of the reactive power compensating facility is inevitably generated. Therefore, in this paper, we aim to solve the reactive power compensation problem of existing VFT by designing rectifier AC-DC converter, which is an essential element of the asynchronous grid connection system using VFT, to compensate reactive power as well as active power supply. The performance was verified through simulation.

A study on the THD reduction of single phase 2 level inverter for grid connection for ship (선박 계통연계형 단상 2레벨 인버터의 THD 저감에 관한 연구)

  • Kim, Jung-Hoon;Kim, Sung-Hwan;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • There are 440V and 220V electric source in ship. A 440V source is used to drive the power system such as crane and winch on deck and pump in engine room, and a 220V source is used to drive the power source for residential zones, control devices in engine room. In this paper, we made single phase inverter system for grid connection with 220V source for ship, and analyzed THD(Total harmonic distortion) by variation of parameters of L-C low pass filter and deadtime of inverter switching.