• Title/Summary/Keyword: greenhouse frame

Search Result 53, Processing Time 0.027 seconds

A Study on the Shape of Section in Member and Stress Tolerant Structural System in the Frame of Green Houses (내재해성이 우수한 비닐하우스 부재의 단면형상 및 구조시스템에 관한 연구)

  • Shim, Jong-Seok;Han, Duck-Jeon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.4
    • /
    • pp.67-75
    • /
    • 2012
  • The damage of greenhouse has been increasing due to frequent collapse of frame in greenhouse caused by the heavy snow and strong wind. But, greenhouses are constructed by steel tube members of pipe style and pin connection of them, so these greenhouses are very weak. Therefore, this study was carried out to find the type of member section and structural frame system in stress tolerant greenhouses. The modeling types for analysis were designed in accordance with structural frame configuration and member section in greenhouse. These types of models, which are existing type, diagrid type, symmetric and asymmetric section type of frame member in greenhouse were classified. Displacement analysis varying the vertical and horizontal loads for a series of models was carried out. As a result of this paper, it was verified that the structural frame configuration of diagrid type and asymmetric type of member section is better than existing type in the frame of greenhouses against snow loads and wind loads.

Machine Vision Based Detection of Disease Damaged Leave of Tomato Plants in a Greenhouse (기계시각장치에 의한 토마토 작물의 병해엽 검출)

  • Lee, Jong-Whan
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.446-452
    • /
    • 2008
  • Machine vision system was used for analyzing leaf color disorders of tomato plants in a greenhouse. From the day when a few leave of tomato plants had started to wither, a series of images were captured by 4 times during 14 days. Among several color image spaces, Saturation frame in HSI color space was adequate to eliminate a background and Hue frame was good to detect infected disease area and tomato fruits. The processed image ($G{\sqcup}b^*$ image) by OR operation between G frame in RGB color space and $b^*$ frame in $La^*b^*$ color space was useful for image segmentation of a plant canopy area. This study calculated a ratio of the infected area to the plant canopy and manually analyzed leaf color disorders through an image segmentation for Hue frame of a tomato plant image. For automatically analyzing plant leave disease, this study selected twenty-seven color patches on the calibration bars as the corresponding to leaf color disorders. These selected color patches could represent 97% of the infected area analyzed by the manual method. Using only ten color patches among twenty-seven ones could represent over 85% of the infected area. This paper showed a proposed machine vision system may be effective for evaluating various leaf color disorders of plants growing in a greenhouse.

The Strain of Pipe Framed Greenhouse by Typhoon (태풍에 의한 파이프 골조 온실의 변형도)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.99-106
    • /
    • 2002
  • This research was performed to study the actual behavior of 1-2W type pipe greenhouse under the influence of typhoon by measuring the various strains in structural materials. These results can eventually be utilized in the design criteria as well as in the modification of conventional equation for calculating more realistic wind loads. The first data under the influence of Typhoon Olga arrived in Jinju on Aug. 1999 were obtained by strain gage with 10 sensor points. According to the data obtained, the typical variation of strain depending on wind pattern could be observed. The strains in structural frame were fluctuated very sensitively depending on the direction and magnitude of wind velocity. But some of the data were lost or missed by system's failure. A kind of inherent vibration pattern of greenhouse pipe frame was observed from the plotted data, but this phenomenon is not so clear as to be separated from the overall fluctuation so far. This experimental research is expected to be continued as a long term project to measure and analyze the strain pattern of structural frame depending on the various locations and section characteristics by way of adopting more efficient instrument with sufficient number of measuring points and accuracy.

A Study on the Strain of Greenhouse Frame by Typhoon (태풍에 의한 온실구조재의 변형도 고찰)

  • 이수근;윤용철;서원명
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.439-446
    • /
    • 1999
  • This research was performed to study the actual behavior of 1-2W type pipe greenhouse under the influence of typhoon by measuring the vairous strains instructural materials. These results can eventually be utilized in the desgin criteria as well as in the modification of conventional equaltion for calcu more realistic wind loads. Tehfirst data under the influence of Typhoon Olga arrived in Jinju on Aug. 1999. Were obtained by strain gage with 10 sensor points. According to the data obtained, the typical variation ofstrain depending on wind patter could be observed. The strains in structural frame were fluctuated very sensitively depending on the direction and magnitude of wind velocity. But some of the data were lost or missed by system's failure. A kind of inherent vibration pattern of greenhouse pipe frame was observed from the plotted data, but this phenomenon is not so clear as to be separated from the overall fluctuation so far. This experimental research is expected to be continued as a long term project to measure and analyze the strain pattern of structural frame depending on the various locations and section characteristics by wasy of adopting more efficientg instrument with sufficient number of measuring points and accuracy.

  • PDF

Analysis and Reinforcing Method of Greenhouse Frame for Reducing Heavy Snow Damage (단동온실의 설해 경감을 위한 해석 및 보강방법연구)

  • Park, Soon-Eung;Lee, Jong-Won;Lee, Suk-Gun;Choi, Jae-Hyouk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • Recently, the damage of the farmhouse has been increased due to frequent collapsing accidents of the pipe greenhouse caused by the heavy snow load derived from unusual weather phenomena. However, the study about it is rare and tenuous so that the damage is happened repeatedly. Although there are a few ways to improve the greenhouse such as increasing section, decreasing the distance between rafters in order to avoid the collapsing accidents, those ways have some shortcomings like cost and frame ratio increase, etc. Therefore, this study performed the large displacement analysis considering geometric non-linearity on each load level with respect to many kind of reinforcement methods and analyzed combined strength ratio and stress so as to search the ways, which enhance the structural stability of greenhouse and minimize the frame ratio increase. As a result, this paper is aimed at suggesting the optimal reinforcement method model.

A Study on the Improvement of Greenhouse Frame to Bear the Heavy Snow (적설하중 증가에 대비한 비닐하우스 골조 성능의 개선 연구)

  • Jung, Hyunjin;Yang, Sanghyun;Lee, Taehee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2242-2248
    • /
    • 2015
  • The damages from greenhouses collapsing due to heavy snowfall in winter are increasing, and the current frames of greenhouse are required to be improved. This study was conducted to seek solutions to improve intensities of greenhouse frame to bear heavy snows. We investigated a structural safety of greenhouses by calculating axial force, bending moment and combined stress when snow load was increased up to 30% of the current standard ground snow load of the conventional greenhouse types (07-single type 3, 07-single type 18) in the three regions (Gyeongju, Sokcho, and Gangneung) where were most damaged by recent heavy snows. In addition, we determined what structural type was most efficiently bear snow loads by measuring the differences between the load bearing strength according to the changes of tube diameter and thickness or the rafter spacing of greenhouses circular pipe. MIDAS GEN program was used in the analysis. As a result, with the snow load increase of 30%, greenhouse in Gyongju was still safe, but in Sokcho was at a risk, and in Gangneung was possible to be collapsed even in the current snow load. Increased pipe diameter than increased pipe thickness was more efficient in terms of improved performance of greenhouse structure. Accordingly, it is suggested to revise standards of greenhouse to increase pipe diameter of rafter for minimizing damages by heavy snow.

Effect of Polycarbonate Covering Sheet on Greenhouse Indoor Environments and Growth Behavior of Cherry Tomatoes

  • Choi, Kyung Yun;Kim, Soo Bok;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Ju-Ho;Kim, Namil
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.114-119
    • /
    • 2020
  • The effect of a greenhouse-covering material on its indoor environment and on the characteristics of cherry tomatoes grown in it was investigated. The conventional polyethylene (PE) film on the greenhouse roof was replaced by a polycarbonate (PC) sheet, while maintaining the main structural frame intact. Color changes and the formation of water droplets on the PC surface were avoided by applying coextrusion and coating layers. When compared to the PE greenhouse, the PC greenhouse enabled increased light transmittance and thus a higher indoor temperature during both summer and winter. The thermal insulating property of the PC sheet effectively reduced the heating loss by approximately 55% during winter. The cherry tomatoes grown in the PC greenhouse exhibited superior fruit characteristics in terms of size, weight, and sugar content. The total amount of cherry tomatoes produced per unit area (1,000 ㎡) in the PC greenhouse was found to be greater by approximately 19% compared to that in the PE greenhouse.

Experimental Study on Strengthening Effect of Plastic Greenhouse using Tension-tie (인장타이를 이용한 비닐하우스의 보강효과에 관한 실험적 연구)

  • Jang, Yu-Jin;Lee, Swoo-Heon;Chae, Seoung-Hun;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.151-160
    • /
    • 2010
  • The number of cases of collapsed plastic greenhouses in farmlands has increased due to the heavy local snowfall caused by extraordinary atmospheric phenomena. Consequently, the economic losses of farmers have also increased. However the government policy in relation to damage pretension is insufficient and collapse case is repeated every year. The main reason for frame collapse is that the moment capacity of a steel pipe is not sufficient to resist a heavy snowload. In this study, experiments were conducted on the current frame system of a greenhouse with a tension tie. The frame consisted of two sections(${\phi}25.4{\times}1.5$, ${\phi}31.8{\times}1.5$), and its span length was 6.5 m. A temporary tension tie using a steel wire and a fabric rope was connected to the two joints, to which a curved beam and a straight column were connected. The pretension force was applied at the tension tie, and a vertical force simulating snowfall was applied until failure. The fabric rope frame increased the load-carrying capacity by 10-45% compared to the normal frame without a tension tie, and the steel wire frame increased the load-carrying capacity by 58-73% compared to the normal frame without a tension tie. Steel wire was found to be more effective as far as strength is concerned, but its connection details and pretension application are more difficult and complicated than those of the fabric rope. The test results thus show that the fabric rope is more preferable.

A study on Development of Stress Tolerant Structural System in the Frame of Greenhouses (내재해성이 우수한 비닐하우스골조 구조시스템 개발에 관한 연구)

  • Shim, Jong-Seok;Lee, Choon-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.1
    • /
    • pp.5-13
    • /
    • 2012
  • The frame of pipe greenhouses in Korea have been collapsed increasingly due to very weak in structure caused by the heavy snow and strong wind. In order to reduce the collapse of green houses, it is urgent to develop the new structural system in stress tolerant greenhouses. Therefore, this paper performed the structural analysis of greenhouse frame in accordance with snow loads and wind loads. Three type models in structural frame configuration of greenhouses, that is, existing type, diagrid type, and honeycomb type are selected. It was classfied the section shape of structural frames in greenhouses into arch style, standard style, and diagonal standard style. As a result of this paper, it was verified that the structural system of diagrid type is better than that of existing type against snow loads and wind loads in the frame of greenhouses.

Effects of frame ratio and length on the transmissivity of solar radiation in glasshouse by a computer simulation (컴퓨터 시뮬레이션에 의한 유리온실내의 일사 투과율에 미치는 골조율 및 동길이의 영향)

  • 이석건;김용현
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 1999
  • This study was conducted to investigate the effects of the frame ratio and greenhouse length on the transmissivities of direct and diffuse solar radiation in glasshouse using a computer simulation model developed by Kim and Lee(1997). Transmissivity of diffuse solar radiation slightly decreased as the frame ratio increased. There was no effect of number of spans on the transmissivity of diffuse solar radiation at the same frame ratio. In single or multispan glasshouse, transmissivity of direct solar radiation was 1.5-3.0% higher at the frame ratio of 11.3% than those at the frame ratio of 14.9%. Also the transmissivity of direct solar radiation was 1.5-3.0% lower at the frame ratio of 18.3% than those at the frame ratio of 14.9%. Effect of the increased or decreased frame ratio on the transmissivity of direct solar radiation was similar in I-W or S-N glasshouse. Since the high transmissivity of direct solar radiation exerted a beneficial influence upon the plant growth during winter season, the light and endurable structural members were needed to maximize the transmission of solar radiation in glasshouse. Transmissivity of direct solar radiation in I-W or S-N glasshouse did not vary with the length of 24.5m long or more.

  • PDF