• Title/Summary/Keyword: greenhouse emission

Search Result 1,047, Processing Time 0.027 seconds

Decomposition Analysis on Greenhouse Gas Emission of Railway Transportation Sector (철도수송부문 온실가스 배출 요인 분해분석)

  • Lee, Jaehyung
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.407-421
    • /
    • 2018
  • In this paper, I analyze the GHG (greenhouse gas) emission factor of the domestic railway transportation sector using the LMDI (Log Mean Divisia Index) methodology. These GHG factors are the emission factor effect, energy intensity effect, transportation intensity effect, and economic activity effect. The analysis period was from 2011 to 2016, and the analysis objects were an intercity railway, wide area railway, and urban railway. The results show that the GHG emission of railway transportation sector decreased during these 6 years. The factors decreasing the GHG emission are the emission factor effect, energy intensity effect, and transportation intensity effect, while the factor increasing the GHG emission is the economic activity effect.

Effects of Organic Farming on Greenhouse Gas Emission Reduction (유기농업의 온실가스 감축효과)

  • Kim, Chang Gil;Jeong, Hak Kyun;Kim, Yong Gyu
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.335-339
    • /
    • 2016
  • The purpose of this study is to analyze effects of greenhouse gas reduction in organic agriculture. To accomplish the objective of the study, a field survey was conducted. Based on the field survey results, LCA method was used to estimate the greenhouse gas emission. The farmer survey and LCA estimation data were provided by The Foundation of Agricultural Technology Commercialization and Transfer. The GHG estimation results showed that GHG emission of organic farming is less by 10.6~89.3% when compared with the conventional farming. In addition, the economic value of greenhouse gas reduction in organic farming amounts to 1,097 million won. Based on major findings, in response to national greenhouse gas reduction target, it is needed to expand organic farming, supporting organic farmers' income.

Estimation of Uncertainty on Greenhouse Gas Emission in the Agriculture Sector (농업분야 온실가스 배출량 산정의 불확도 추정 및 평가)

  • Bae, Yeon-Joung;Bae, Seung-Jong;Seo, Il-Hwan;Seo, Kyo;Lee, Jeong-Jae;Kim, Gun-Yeob
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.125-135
    • /
    • 2013
  • Analysis and evaluation of uncertainty is adopting the advanced methodology among the methods for greenhouse gas emission assessment that was defined in GPS2000 (Good practice guideline 2000) and GPG-LULUCF (GPG Land Use, Land-Use Change and Forestry). In 2006 IPCC guideline, two approaches are suggested to explain the uncertainty for each section with a national net emission and a prediction value on uncertainty as follows; 1) Spread sheet calculation based on the error propagation algorithm that was simplified with some assumptions, and 2) Monte carlo simulation that can be utilized in general purposes. There are few researches on the agricultural field including greenhouse gas emission that is generated from livestock and cultivation lands due to lack of information for statistic data, emission coefficient, and complicated emission formula. The main objective of this study is to suggest an evaluation method for the uncertainty of greenhouse gas emission in agricultural field by means of intercomparison of the prediction value on uncertainties which were estimated by spread sheet calculation and monte carlo simulation. A statistic analysis for probability density function for uncertainty of emission rate was carried out by targeting livestock intestinal fermentation, excrements treatment, and direct/indirect emission from agricultural lands and rice cultivation. It was suggested to minimize uncertainty by means of extraction of emission coefficient according to each targeting section.

A study on the greenhouse gas emission from ships with training ship HANBADA (실습선 한바다호를 이용한 선박부문 온실가스 배출량 산정에 관한 연구)

  • Lee, Sang Deuk;Koh, Dae Kwon;Jung, Suk Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.240-245
    • /
    • 2014
  • As the seriousness of the global environment pollution is gaining our attention recently, researches on application of greenhouse gas emission of ship are being carried globally. However domestic study on greenhouse gas emission from ship was not carried out in various fields. In this study, quantitative data which was presented by greenhouse gas emission of training ship HANBADA and greenhouse gas emission was calculated by Tier 1 method based on total fuel consumption and amount of shore power. Actual voyage data for 1year in 2012 was used to analysis the greenhouse gas emission. This study showed how many weight of gases were exhausted per 1 gross tonnage and per 1trainee in the training ship. There is a need of further research to reduce pollutant and to respond to international environment regulation consistently.

A Study on the Quantitative and Evaluation Weights of National Greenhouse Gas Emission Factors in the Mineral Industry (광물산업의 국가온실가스배출계수 정량·평가항목 가중치에 관한 연구)

  • Yoon, Yoongjoong;Cho, Changsang;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.81-90
    • /
    • 2018
  • "The Framework Act on Low-Carbon Green Growth" specifies the requirements for the development and verification of emission factors for establishing reliable national greenhouse gas statistics. The scope of the regulations covers the development and validation of energy, industrial processes, solvents and other product use, agriculture, land use, land use change and emission and absorption coefficients of the forestry and waste sector as defined in the 1996 IPCC Guideline and GPG 2000, The minerals sector to be covered in this study belongs to industrial processes. As a representative method for quantifying and evaluating GHG emission factors, there are emission grade quality grading and DARS (Data Rating Rating System) in the 'Procedures for Preparing Emission Factor Documents (1997)' reported by US-EPA. However, the above two methods are not specific and comprehensive, and lack the details for accurate emission factor verification. Therefore, there is a need for a method for verifying and quantifying certified greenhouse gas emission factors that reflects characteristics of each industry sector in Korea and accord with IPCC G/L and GHG target management. In this study, we conducted a weighted study on quantitative and evaluation lists of emission factor using questionnaires to develop a more accurate methodology for quantifying national greenhouse gas emission factors in the mineral sector. Quantification and evaluation of emission factor are classified into essential verification and quality evaluation. The essential verifications are : administrative compatibility, method of determining emission factors, emission characteristics, sampling methods and analysis methods, representativeness of data. The quality evaluations consisted of the quality control of the data, the accuracy of the measurement and analysis, the level of uncertainty, not directly affect the emission factor, but consisted of factors that determine data quality.

DNDC Modeling for Greenhouse Gases Emission in Rice Paddy of South Korea and the Effect of Flooding Management Change and RCP 8.5 Scenario (RCP 8.5 시나리오와 관수 기법의 변화에 따른 논에서의 온실가스 배출 변화의 DNDC 모델을 통한 모의)

  • Min, Hyungi;Kim, Min-Suk;Kim, Jeong-Gyu;Hwang, Wonjae
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.189-198
    • /
    • 2018
  • In 21th century, climate change is one of the fundamental issue. Greenhouses gases are pointed as the main cause of climate change. Soil play a vital role of carbon sink and also can be a huge source of greenhouse gases defense on the management. Flux of greenhouse gases is not the only factor can be changed by climate change. Climate change can alter proper management. Temperature change will modify crop planting and harvesting date. Other management skills like fertilizer, manure, irrigation, tillage can also be changed with climate change. In this study, greenhouse gases emission in rice paddy in South Korea is simulated with DNDC model from 2011 - 2100 years. Climate for future is simulated with RCP 8.5 scenario for understanding the effect of climate change to greenhouse gases emission. Various rice paddy flooding techniques were applied to find proper management for future management. With conventional flooding technique, climate change increase greenhouse gases emission highly. Marginal flooding can decrease large amount of greenhouse gases emission and even it still increases with climate change, it has the smallest increasing ratio. If we suppose the flooding technique will change for best grain yield, dominant flooding technique will be different from conventional flooding to marginal flooding. The management change will reduce greenhouse gases emission. The result of study shows the possibility to increase greenhouse gases emission with climate change and climate change adaptation can show apposite result compared without the adaptation.

Development of Emission Factors for Greenhouse Gas (CO2) from Bituminous coal Fired Power Plants (에너지사용시설의 온실가스 배출 특성 연구 -유연탄 화력발전소의 이산화탄소를 중심으로-)

  • Jeon Eui Chan;Sal Jae Whan;Lee Seong Ho;Jeong Jae Hak;Kim Ki Hyun;Bae Wi Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.107-116
    • /
    • 2006
  • The main purpose of this study is to develop the greenhouse gas emission factor for power plant using bituminous coal. The power plant is a major source of greenhouse gases among the sectors of fossil fuel combustion, thus information of its emission factors is very essential to the establishment of control strategies for the greenhouse gas emissions. These emission factors derived in this study were compared with those of U. S. EPA, AGO and CCL. The $CO_{2}$ concentrations in the flue gas were measured using NDIR analyser and the GC-FID with a methanizer. The amount of carbon (C) and hydrogen (H) in fuel was measured using an elemental analyzer. Calorific values of fuel were also measured using a calorimeter. Caloric value of bituminous coal used in the power plants were 5,957 (as received basis), 6,591 (air-dried basis) and 6,960 kcal/kg (dry basis). Our estimates of carbon emission factors were lower than those of IPCC. The CO2 emission factors for the power plants using bituminous coal were estimated to be 0.791 Mg/MWh (by carbon contents and caloric value of the fuel) and 0.771 Mg/MWh (by $CO_{2}$ concentration of the flue gas). The $CO_{2}$ emission factors estimated in this study were $3.4\sim 5.4\%$ and $4.4\sim 6.7\%$ lower than those of CCL (2003) and U. S. EPA (2002).

Comparison of N2O Emissions by Greenhouse Gas Emission Estimation Method (온실가스 배출량 산정 방법에 따른 N2O 배출량 비교)

  • Kang, Soyoung;Cho, Chang-Sang;Kim, Seungjin;Kang, Seongmin;Yoon, Hyeongi;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.175-184
    • /
    • 2015
  • In this study GC and PAS were used to calculate $N_2O$ concentration of exhaust gas from Wood Chip combustion system. Fuel supplied to the incinerator was collected and analyzed and then the analysis result was used to calculate $N_2O$ emissions. Tier 3 and Tier 4 Method were used to calculate the $N_2O$ emissions. Plant's Specific emission factor of $N_2O$ by Tier 3 Method was 0.35 kg/TJ, while default emission factor of Wood?Wood Waste proposed by 2006 IPCC G/L was 4 kg/TJ. So the $N_2O$ emission factor of this study was 3.65 kg/TJ lower compared to the IPCC G/L. The total emissions calculated by Plant's specific emission factor was 4.22 kg during the measuring period, but by Tier 4 Method it was 7.88 kg. This difference in emissions was caused by the difference of continuous measuring and intermittent sampling. It would be necessary to apply continuous measuring to calculate emissions of $Non-CO_2$ gas whose the density distribution is relatively high. However currently, according to the target management guideline of greenhouse gas and energy, the continuous measuring method to calculate greenhouse gas emission is applied only to $CO_2$. Therefore for reliable greenhouse gas emission calculation it would be necessary to apply continuous measuring to calculate $Non-CO_2$ gas emission.

Nationwide Reduction of Primary Energy and Greenhouse Gas Emission by PMV Control Considering Individual Metabolic Rate Variations in Apartments (아파트 건물에서 재실자 활동량이 고려된 PMV제어에 따른 연간 국가 차원의 1차 에너지 및 온실가스 감축량 분석)

  • Hong, Sung-Hyup;Do, Sung-Lok;Lee, Kwang Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.37-44
    • /
    • 2018
  • In this study, the effects of considering hourly metabolic rate variations for predicted mean vote (PMV) control on the heating and cooling energy and greenhouse gas emission were investigated. The case adopting PMV control taking the hourly metabolic rate into account was comparatively analyzed against the conventional dry-bulb air temperature control, using a detailed simulation technique. Under the assumption that all the apartments in Korea adopt the PMV control incorporating real-time metabolic rate measurements, nationwide reductions of primary energy and greenhouse gas emission were analyzed. As a result, PMV control considering hourly metabolic rate variations is expected to reduce national primary energy by 6.2% compared to conventional dry-bulb air temperature control, corresponding to reduction of 10,342 GWh. In addition, it turned out that 6.6% of tCO2 emission can be reduced by adopting PMV control, corresponding to nationwide reduction of greenhouse gas emission by approximately 1,720,000 tCO2.

A Study on Intellgence Emergency Guide Line System (지능형 피난유도선 시스템에 대한 연구)

  • Park, Yong-Gyu;Kim, Suk-Eun;Kang, Kyung-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.107-116
    • /
    • 2010
  • Government and company are unfolding greenhouse gas reduction activity to prevent the effects of global warming. Also, verification business through greenhouse gas inventory construction is spreaded variously. Greenhouse gas verification proceeds by document examination, risk analysis, field survey. Document investigates emission information, calculation standard, emission report, data management system. And through risk assessment result, establish field verification plan. Through study on risk assessment of greenhouse gas inventory verification, wish to reduce risk of verification.

  • PDF