• Title/Summary/Keyword: greenhouse design

Search Result 463, Processing Time 0.027 seconds

Combustion Study of 1MWe Circulating Fluidized Boiler for RDF (1MWe급 순환유동층 열병합 보일러 운전연구)

  • Shun, Do-Won;Bae, Dal-Hea;Jo, Sung-Ho;Lee, Seung-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.837-842
    • /
    • 2012
  • A pilot scale circulating fluidized boiler (CFB) for refuse derived fuel (RDF) is designed and constructed to demonstrate a performance of CFB technology for waste fuel utilization. The boiler has a design capacity of 6 MWth with $400^{\circ}C$ 38 ata steam generation performance. The maximum steam rate of the boiler was about 8 ton/h. The main component of the fuel was RDF (Refuse Derived Fuel) with high volatile contents and showed fast ignition and easy combustion. The pilot plant showed over 99.5% of combustion efficiency. Stable operation of RDF CFBC depended on the content of non combustion materials other than ash and fast removal of them. Emission level was under legal limit except that of HCl without external flue gas treatment facilities. Also about 60% of fuel chlorine was absorbed to fly ash particles. For HCl emission control flue gas treatment technology is required such as wet and dry scrubber in order to comply with Korean regulation.

Study on Temperature Variation by Greenhouse Soil Warming System Using Solar Thermal Energy (2) - Required Energy per Unit Area for Soil Warming - (태양열을 이용한 시설재배 지중변온가온의 토양 온도특성 연구(2) - 지중변온가온의 단위면적당 소요에너지 -)

  • Kim, Jin-Hyun;Kim, Tae-Wook;Nah, Kyu-Dong;Kim, Tae-Soo;Kim, Eun-Tae;Chung, Suk-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • The temperature of root zone was known as an important factor for the growth of crops and reduction of energy in greenhouse. The purpose of this study was to design the apposite inflow of calories per the unit area by comparison of temperature in the warmed and non-warmed soil. The energy needed for soil warming about pipe length showed the change of temperature on inflow and outflow as $2^{\circ}C{\sim}3^{\circ}C$(average $2.5^{\circ}C$). Therefore, the inflow per the unit hour was 3,450, 57,5 kcal/$h{\cdot}m^2$ on soil heating respectively. The non-warmed soil temperature in greenhouse made a difference by depth and it was partially affected inner temperature under 15 cm, but it was not above 15 cm. The soil temperature would be raised over $5^{\circ}C$ than non-warmed soil to increase effect of soil warming. Therefore, the inflow per the unit area that should be provided was about 100 kcal/$h{\cdot}m^2$.

Feasibility Study of Microturbine CHP and Greenhouse $CO_2$ Enrichment System as Small Scale LFG Energy Project (소규모 매립가스 자원화를 위한 마이크로터빈 열병합발전 및 유리온실 $CO_2$ 농도 증가 시스템의 타당성 연구)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Rhim, Sang-Gyu;Lee, In-Hwa
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.15-24
    • /
    • 2009
  • As new small scale LFG (landfill gas) energy project model which can improve economic feasibility limited due to the economy of scale, LFG-Microturbine combined heat and power system with $CO_2$ fertilization into greenhouses was proposed and investigated including basic design process prior to the system installation at Gwang-ju metro sanitary landfill. The system features $CH_4$ enrichment for stable microturbine operation, reduction of compressor power consumption and low CO emission, and $CO_2$ supplement into greenhouse for enhancement plant growth. From many other researches, high $CO_2$ concentration was found to enhance $CO_2$ assimilation (also known as photosynthesis reaction) which converts $CO_2$ and $H_2O$ to sugar using light energy. For small scale landfills which produce LFG under $3\;m^3$/min, among currently available prime movers, microturbine is the most suitable power generation system and its low electric efficiency can be improved with heat recovery. Besides, since its exhaust gas contains very low level of harmful contaminants to plant growth such as NOx, CO and SOx, microturbine exhaust gas is a suitable and economically advantageous $CO_2$ source for $CO_2$ fertilization in greenhouse. The LFG-Microturbine combined heat and power generation system with $CO_2$ fertilization into greenhouse gas to enhance plant growth is technologically and economically feasible and improves economical feasibility compared to other small scale LFG energy project model.

  • PDF

Simulation on CO2 capture process using an Aqueous MEA solution (MEA 흡수제를 이용한 이산화탄소 포집 공정 모사)

  • Woo, Dae-Sik;Nam, Sung-Chan;Jeong, Soon-Kwan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.431-438
    • /
    • 2012
  • The $CO_2$ capture technology using an aqueous amine solution is studied widely now. The entire process consists of an absorber to remove carbon dioxide selectively and a regenerator to regenerate absorbent and acquire pure carbon dioxide. Because there are the complicated design variables that affect performance of the process, it needs optimization and analysis through modeling to make a commercially reliable process. In this study, the decomposition method was proposed to consider convergence problem and sensitivity analysis was executed for the carbon dioxide capture process variables. Non-equilibrium model was used in the simulation to get more realistic results and we designed optimized process with more than 95% purity and 90% recovery.

Development of Autonomous Sprayer Considering Tracking Performance on Geometrical Complexity of Ground in Greenhouse

  • Lee, Dong Hoon;Lee, Kyou Seung;Cho, Yong Jin;Lee, Je Yong;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.287-295
    • /
    • 2012
  • Purpose: Some of the most representative approaches are to apply next generation technologies to save energy consumption, fully automated control system to appropriately maintain environmental conditions, and autonomous assistance system to reduce labor load and ensure operator's safety. Nevertheless, improvement of upcoming method for soil cultured greenhouse has not been sufficiently achieved. Geometrical complexity of ground in protected crop cultivation might be one of the most dominant factors in design of autonomous vehicle. While there is a practical solution fairly enough to promise an accurate travelling, such as autonomous sprayer guided by rail or induction coil, for various reasons including the limitation of producer's budget, the previously developed sprayer has not been widely distributed to market. Methods: In this study, we developed an autonomous sprayer considering travelling performance on geometrical complexity of ground in soil cultured greenhouse. To maintain a stable travelling and to acquire a real time feedback, common wire with 80 mm thick and body frame and sprayer boom. To evaluate performance of the prototype, tracking performance, climbing performance and spraying boom's uniform leveling performance were individually evaluated by corresponding experimental tests. Results: The autonomous guidance system was proved to be sufficiently suitable for accurate linear traveling with RMS as lower than approximately 10 cm from designated path. Also the prototype could climb $10^{\circ}$ of ground's slope angle with 40 kg of water weight. Uniform leveling of spraying boom was successfully performed within $0.5^{\circ}$ of sprayer boom's slope. Conclusions: Considering more complex pathways and coarse ground conditions, evaluations and improvements of the prototype should be performed for promising reliability to commercialization.

Evaluation of stress distribution with wind speed in a greenhouse structure

  • Hur, Deog-jae;Noh, Jung-Hun;Lee, Hyun ju;Song, Hyoung woon
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.347-356
    • /
    • 2018
  • In this paper, stress distribution for a structurally stable greenhouse is considered in the present paper with subsequent investigation into the detailed stress distribution contour with the variation of self-weight and wind pressure level designation method under wind velocity of less than 30 m/sec. For reliable analysis, wind pressure coefficients of a single greenhouse unit were modeled and compared with experiment with correlation coefficient greater than 0.99. Wind load level was designated twofold: direct mapping of fluid dynamic analysis and conversion of modeled results into wind pressure coefficients ($C_P$). Finally, design criteria of EN1991-1-4 and NEN3859 were applied in terms of their wind pressure coefficients for comparison. $C_P$ of CFD result was low in the most of the modeled area but was high only in the first roof wind facing and the last lee facing areas. Besides, structural analysis results were similar in terms of stress distribution as per EN and direct mapping while NEN revealed higher level of stress for the last roof area. The maximum stress levels are arranged in decreasing order of mapping, EN, and NEN, generating 8% error observed between the EN and mapping results under 30 m/sec of wind velocity. On the other hand, effect of dead weight on the stress distribution was investigated via variation of high stress position with wind velocity, confirming shift of such position from the center to the forward head wind direction. The sensitivity of stress for wind velocity was less than 0.8% and negligible at wind velocity greater than 20 m/sec, thus eliminating self-weight effect.

Greenhouse Gas Emissions from Building Sector based on National Building Energy Database (국가 건물에너지 통합DB 기반 건물부문 온실가스 배출현황)

  • Ji, Chang-Yoon;Choi, Min-Seok;Gwon, Oh-In;Jung, Ha-Rim;Shin, Sung-Eun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.143-152
    • /
    • 2020
  • This study analyzes in detail greenhouse gas emissions in building sector. To this end, this study used data on building characteristics (including building type, region, and construction year) and monthly energy consumptions (including electricity, city gas, and district heat) for all buildings from 2015 to 2018. These data were collected from the National Building Energy Database and the energy consumptions were converted into greenhouse gas (GHG) emissions. The total amount of GHG emissions from the building sector has increased steadily from 2015 (118.1MtCO2eq.) to 2018 (132.6MtCO2eq.). On the other hand, the more recently constructed buildings had lower GHG intensities. This result shows that strengthening building design criteria was effective on the reduction of GHG emissions in buildings, and that the increased buildings contributed to increasing GHG emissions of the building sector. In addition, sales facilities are thought to have the largest reduction potential as they had the highest amount of GHG emissions and GHG intensity. This study is expected to help establish new policies for GHG reduction in building sector as well as to evaluate the effects of existing policies.

An Effective Smart Greenhouse Data Preprocessing System for Autonomous Machine Learning (자율 기계 학습을 위한 효과적인 스마트 온실 데이터 전처리 시스템)

  • Jongtae Lim;RETITI DIOP EMANE Christopher;Yuna Kim;Jeonghyun Baek;Jaesoo Yoo
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.47-53
    • /
    • 2023
  • Recently, research on a smart farm that creates new values by combining information and communication technology(ICT) with agriculture has been actively done. In order for domestic smart farm technology to have productivity at the same level of advanced agricultural countries, automated decision-making using machine learning is necessary. However, current smart greenhouse data collection technologies in our country are not enough to perform big data analysis or machine learning. In this paper, we design and implement a smart greenhouse data preprocessing system for autonomous machine learning. The proposed system applies target data to various preprocessing techniques. And the proposed system evaluate the performance of each preprocessing technique and store optimal preprocessing technique for each data. Stored optimal preprocessing techniques are used to perform preprocessing on newly collected data

The Development of Structural System of Long-span Greenhouse Using the Pre-Engineering Building System (선설계기법을 이용한 장경간 유리온실 구조시스템 개발)

  • Oh, Myoung-Ho;Kim, Yong-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Rural facilities need to be changed to be industrialized and long span structures due to accelerating aging of the rural population. In this study, the optimized structure was developed by applying Pre-Engineered Building System using the tapered member to make that the Korea standard green house has a long span. When considering design load, reasonable values were adapted by reviewing existing design codes. As a result, applying pre-engineered building system was efficient in structural system that has span longer than 16 m. And it was concluded that the increase with the longitudinal span from 4 m to 12 m was more efficient in aspect of steel amount.

Rotational Stiffness of Connection in Multi-span Vinyl Greenhouse (내재해형 연동 비닐하우스 접합부의 회전강성)

  • Kim, Min-Sun;Choi, Ki-Sun;Shin, Ji-Uk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.3-10
    • /
    • 2018
  • Recently, severe damage to domestic horticultural structures is frequently observed due to extreme climate effects. To minimize the structures' damage, a study on the structural stability of multi-span vinyl greenhouses is needed. This paper presents to measure the rotational stiffness of different connectors to improve the design capacities of the specification. The paper investigated fourteen types of the different connectors, which was commonly used in the multi-span greenhouses, and three different types of the connectors predicted to be under moment-connection were selected: i) T-clamp, ii) U-clamp, iii) C-clamp. Static loading tests for three different connectors were performed to measure the rotational stiffness. Additionally, the boundary condition for the structural design was proposed based on the experimental results of the rotational stiffness. One of three connectors, C-clamp had larger rotational stiffness than other connectors, and the experimental results presented the three connectors had boundary conditions; i) T-clamp was pinned-connection, ii) U-clamp was semi-rigid connection, iii) C-clamp was semi-rigid connection.