• Title/Summary/Keyword: greenhouse cultivation area

Search Result 118, Processing Time 0.018 seconds

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

Study on the Latent Heat Storage of Solar Energy for Greenhouse Heating (Greenhouse 보온(保溫)을 위한 태양(太陽)에너지 잠열축열(潛熱蓄熱) 연구(硏究))

  • Song, H.K.;Tyu, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.4
    • /
    • pp.399-407
    • /
    • 1991
  • In Korea, the cultivation area under the plastic greenhouse was 1,746 ha in 1975, and 36,656 ha in 1989, it shows that the greenhouse cultivation area was increased by 21 times during last 14 years. The greenhouse cultivation area of 90~93% has been kept warm with double layers of plastic film and thermal curtain knitted with rice straw, and the rest area of 7~10% has been heated by fossil fuel energy. The use of rice straw thermal curtain is inconvenient to put it on and off, on the other hand the use of fossil fuel heating system results in the increase of production cost. To solve these problems, at first the heating load and the storable solar energy in greenhouse during the winter season were predicted to design solar utilization system, secondly a solar thermal storage system filled with latent heat storage materials was developed in this study. And then finally the thermal performance of greenhouse-solar energy storage system was analyzed theoretically and experimentally.

  • PDF

Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model (ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

Analysis of Groundwater Conductivity and Water Temperature Changes in Greenhouse Complex by Water Curtain Cultivation (수막용수 사용으로 인한 시설재배지역의 지하수 수온과 전기전도도 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.93-103
    • /
    • 2023
  • This study aimed to analyze the impact of water curtain cultivation in the greenhouse complexes on groundwater's electric conductivity and water temperature. The greenhouse complexes are mainly situated along rivers to secure water resources for water curtain cultivation. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. As a result of analyzing the electric conductivity and water temperature, the following differences were found in the observed characteristics by region. 1) The electric conductivity and water temperature of the riverside area, where the permeability is high and close to rivers, showed a constant pattern of annual changes due to the influence of river flow and precipitation. 2) The flat land in general agricultural areas showed general characteristics of bedrock observation in the case of water temperature. Still, it seemed more affected by the surrounding well's water use and water quality. The electric conductivity did not show any particular trend and was influenced by the surrounding environment according to the location of each point.

Optimum Transplanting Time for Extremely Early Rice Greenhouse Cultivation in the Southern Area (남부지역 시설하우스 벼 극조기재배의 안전작기 설정)

  • 최장수;안덕종;원종건;이승필;윤재탁;김길웅
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.3
    • /
    • pp.191-199
    • /
    • 2003
  • Optimum transplanting time for extremely early rice cultivation as an after-crop of fruit and vegetables under greenhouse conditions in the southern area was determined. Rice was transplanted on March 10, March 20, March 30, April 10 and April 20 far three years from 1998 to 2000. Meteorological computations for rice production were high for heading between early May and early July, but they were too low for heading between late July and early August. Especially the expected yield predicted with 35,000 spikelets, the average spikelets per $m^2$ for extremely early transplanting. Computation for heading between late July and early August was low by 106 kg/10a compared with that yield at heading during the same period in the field. As the transplanting date in extremely early rice cultivation was earlier) rice growth at early stages was more retarded by low temperature. Rice growth at heading stage recovered with high temperature, showing less difference for the transplanting date. Abnormal tillers occurred by 15.5∼22.2%. The contribution of 1,000 grain weight${\times}$ripened grain ratio to yield of the extremely early rice cultivation in the greenhouse was 50.6%, indicating 16% hi일or than the degree of panicle per $m^2$ on yield. The estimated optimum transplanting time on the basis of yield for the extremely early greenhouse rice cultivation ranged from March 19 to April 28, and the estimated critical transplanting date on the basis of accumulated effective temperature was March 12. Rice reduced the amount of NO$_3$-N by 97.1% and EC by 90.5% in greenhouse soil with continuous fruit/vegetables fer more than a 10-year period, and completely removed the root-knot nematodes.

Effects of Rhizome Size and Planting Space on the Growth and Yield or Ginger(Zingiber officinale Rosc.) in Greenhouse Cultivation (생강의 비닐하우스 재배가 생육 및 수량에 미치는 영향)

  • 최재을;김정선;이은정
    • Korean Journal of Plant Resources
    • /
    • v.12 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • This experiment was carried out to investigate the influence of rhizome size and planting space on some agronomic characters and rhizome yield of ginger in greenhouse cultivation. The average air temperature was 9$^{\circ}C$ higher in greenhouse cultivation than in field. The average soil temperature also was 2-4$^{\circ}C$ higher in greenhouse. Plant height, leaf area, stem number and rhizome yield were significantly increased when cultivated at greenhouse compared to field. Under greenhouse the yield of rhizome in 30$\times$30cm planting space were appeared to be increase 121-183% compared with field cultivation. At the planting space of 60$\times$30cm, harvests were increased 76-82% comparing field cultivation. The most suitable rhizome size for planting at 30$\times$30cm planting space found to be 40g in greenhouse cultivation.

  • PDF

Detection Techniques for Greenhouse Area on Paddy Fields Using Landsat TM Images (Landsat TM 영상을 이용한 논지역 내 비닐하우스 면적 추정)

  • Jung In-Kyun;Park Geun-Ae;Jang Cheol-Hee;Kim Seong-Joon
    • KCID journal
    • /
    • v.8 no.2
    • /
    • pp.45-54
    • /
    • 2001
  • A plenty of wastes by greenhouse cultivation affect soil and water pollution much more than those by rice cultivation in paddy field. The greenhouse on paddy field has been increased dramatically, however their physical information such as the location an

  • PDF

Effects of the Brackish Water Desalination System on Soil Environment and Growth in Squash Greenhouse Cultivation Area (시설재배지에서 기수담수화시스템 적용에 따른 토양 환경 및 애호박의 생육 영향 분석)

  • Kim, Soo-Jin;Bae, Seung-jong;Jeong, Han-Suk;Kim, Hak-Kwan;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.113-121
    • /
    • 2018
  • The objectives of the research were 1) to develop the low-cost and high efficient desalination system to treat brackish water having high salt contents for irrigation at greenhouses near coast, and 2) to monitor and assess the effects of the brackish water desalination system on soil environment and growth in squash greenhouse cultivation area. The monitoring site was one of the squash greenhouse cultivation farm at Choengam-ri, Jinsang-myun, Gwangyang-si, Jeonnam-Do Monitoring results for groundwater irrigation water quality, and salinity showed a remarkable difference between control and treatment group. The salinity of soil at treatment group was less than at control group. While, the system made possible to increase the squash quantity from 4.7 ea to 6.3 ea at each and the average weight of the harvested squash was increased from 277.2 g to 295.1 g. The applied brackish water desalination system may be appled to reclaim sea or brackish irrigated area as alternative water resources, although long-term monitoring is needed to get more representative results at different level of salinity.

Effects of Cutivation Method and Planting Date in Growth and Yield of Momordica charantia L. in Spring Season (여주 봄 작형의 재배방법과 정식기가 생육과 수량에 미치는 영향)

  • Son, Dong-Mo;Kim, Seong-Jun;Kim, Hyo-Joong;Kim, Hee-Gon;Yun, Bong-Ki;Jung, Jong-Mo;Lee, Jeong-hyun
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.200-205
    • /
    • 2016
  • This study was conducted in order to investigate the effects that the difference of planting time by a method of cultivation in the non-heated greenhouse and the open field with spring planting had on growth and yield. With regard to the tested variety of Momordica charantia, variety 'Dragon' (Japan Yae 農藝) was selected. And 3 treatments on March 20, April 5 and April 20 for the greenhouse cultivation and 3 treatments on April 20, May 5 and May 20 for the open-field cultivation 1 month later than those for the greenhouse cultivation were planted by the randomized complete block design, and 4 secondary vines were trained. In the results of examining 15-day average atmospheric temperature after planting according to the methods of greenhouse and open-field cultivation and planting time, it was shown that there was a tendency for atmospheric temperature inside the greenhouse to decrease as the planting time was moved up. In particular, the average atmospheric temperature was $16.7^{\circ}C$ when seedling was planted on April 20 in the open-field cultivation, which was approximately equal to $17.0^{\circ}C$ of the average atmospheric temperature when a seedling was planted on March 20 in the greenhouse cultivation. With regard to the date of first harvest by the method of cultivation, it was shown that there was a tendency for the date of first harvest to be earlier in the greenhouse cultivation than in the open-field cultivation, and the date of first harvest was moved up as a seedling was planted earlier for the planting period. The number and weight of harvested fruits per plant showed a tendency which was almost similar to that of total number of harvest days and number of harvests. Thus, the number of fruits was 189 and the weight of fruits was 31,649g in case of the greenhouse cultivation and planting on March 20, which were maximum. In case of planting on the latest planting date : May 20 in the open-field cultivation, the number of fruits was 77 and the weight of fruits was 12,502g, which were at a level of 40% of those of planting on March 20 in the greenhouse cultivation 2 months earlier. The total yield per 10a was 10,228kg in the greenhouse cultivation and was 2.2 times as heavy as 4,607kg in the open-field cultivation with regard to the method of cultivation. For the planting period in the greenhouse cultivation, it was 10,539kg and 10,517kg in planting on March 20 and April 5, which was higher by 9% than 9,629kg in planting on April 20. And in the open-field cultivation, it was 4,785kg in planting on April 20 and 4,872kg in planting on May 5, which was higher by 15~17% than 4,163kg in planting on May 20. Taking the above results into account, it is considered proper to plant Momordica charantia from March 20 to April 5 for the greenhouse cultivation and from April 20 to May 5 or thereabouts when a risk of late frost is gone for the open-field cultivation in southern area.

Effect of Cultivation Type in Different Greenhouses on Growth and Yield of Green Pepper (Capsicum annuum) (시설유형별 재배방식이 풋고추 생육과 수량에 미치는 영향)

  • Hee Chun;Kyung Je Kim;Young Hoe Woo
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.225-231
    • /
    • 2001
  • This study was conducted to examine effect of different environment conditions in glass, PC, PET and PE greenhouses controlled by different environment control systems on the growth of green pepper. Light transmittance of 64.7% in the glass greenhouse was the highest among different green-houses. Air temperature was the highest in the glass greenhouse when ventilators were closed, and was the highest in the PE greenhouse when ventilators were open. Air relative humidity was the highest in the PE greenhouse during 24 hours. The amount of solar energy accumulated in soil was the greatest in the glass greenhouse and this energy released during the night escaped through covering materials. Latent heat and solar energy affected air temperature increased in greenhouses. The air temperature of glass greenhouse was 27.5$^{\circ}C$ at 11 O clock, which was the highest air temperature among the all greenhouse types. Clear differences were observed in leaf area and plant height at 30 days after transplanting. Days to first flowering was the shortest in the glass greenhouse with 72.7 days. Flower shedding was the greatest in the PE greenhouse with 12.6%. Days to fruit harvesting was the shortest in the glass greenhouse with 14.3 days. Fruit quality, such as fruit length, fruit diameter, fruit flesh thickness, and vitamin C content, was the best in the glass greenhouse. Percent marketable fruits was the highest with 95.3% when the pepper was grown hydroponically in the glass greenhouse.

  • PDF