• Title/Summary/Keyword: greenhouse cultivation

Search Result 596, Processing Time 0.028 seconds

Effects of Organic Composts on Soil and Yield Characteristics of Boxthorn(Lycium chinense Mill.) Organic Cultivation

  • Lee, Bo-Hee;Park, Young-Chun;Lee, Sox-Su;Lee, Byung-Joo;Kim, Yeong-Guk;An, Yeong-Seob
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.206-209
    • /
    • 2011
  • For the development of Boxthorn organic cultivation techniques, we investigated effect of several organic compost as a foundation fertilizer and growing plant fertilizer. And we adopted partly opening rain shelter greenhouse to protect anthracnose. In organic compost applying test yield characteristics of 'Mixed organic compost' treatment was the best but in betaine content measurement of dried fruit, 'Mixed organic compost and nitrogen guano' treatment was the best and it's chlorophyll and 100 fruit weight were also better than the other treatments.

Effect of External Light Environment and Growing Degree Days on Strawberry Production (외부 광환경 및 생육도일온도가 딸기 생산량에 미치는 영향)

  • Lee, Taeseok;Kim, Jingu;Park, Seokho;Lee, Jaehan;Han, Kilsu;Moon, Jongpil
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.432-437
    • /
    • 2022
  • In this study, strawberries were grown during the two cultivation periods (first: 2020-2021, second: 2021-2022) to analyze the effect of the external light environment and growing degree days (GDD) on crop production. The temperature and humidity during day in a greenhouse in each cultivation period were similarly managed. At night, there was a statistical difference in temperature and humidity in the greenhouse between two periods. The accumulated solar radiation during the first cultivation period was high in September and October. Since January, the accumulated solar radiation during the second cultivation period was high. In the second cultivation period, the initial yield was small because the accumulated solar radiation and GDD was small. But accumulated yields and potential maximum yields in second cultivation period were larger than yields in the first cultivation period as the accumulated solar radiation and GDD increased. The sugar contents of strawberry decreased as GDD increased.

Effects of Rapid Temperature Change on Growth Response and Yield of Garlic in Greenhouse with Thermostat Control System in Jeonnam Province

  • Lee, Kyung Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.571-578
    • /
    • 2014
  • The garlic cultivation area is moved by change of grown environment due to global warming. It is important to predict changes in cultivation area, quantity and quality of each crop. This study was carried out to estimate the yield and response of garlic growth by the rapid temperature changes in the greenhouse with thermostat control system. Seedlings of Namdo garlic were planted on September 27, 2012 and harvested on May 30, 2013. The used treatments for a rapid temperature change in March-April-May were T0 (control): $6.0-10.4-17.2^{\circ}C$, T1: $6.0-5.4(-5)-17.2^{\circ}C$, T2: $6.0-10.4-22.2(+5)^{\circ}C$ and T3: $6.0-5.4(-5)-22.2(+5)^{\circ}C$. Total dried weight per plant of garlic significantly increased by 5.0% for T2, but T1 and T3 decreased by 12.5 and 4.6%, respectively, compared to T0. Total yields of bulb within the temperature change as T2 and T0 increased significantly (p<0.05), as compared to T1. Decreasing temperature significantly (p<0.05) reduced plant height, SPAD reading, crude protein and fiber contents etc., as compared to T0 and T2. ABA contents gradually increased with time but IAA content rapidly decreased. Conclusively, growth and yield of garlic were more affected by decreased temperature than increased temperature at bulb development stage.

A Study of Constructing the Environment to Adjust the Temperature Automatically (농작물 육성에 필요한 온도 자동조절 환경 구축에 관한 연구)

  • Xu, Chen-lin;Lee, Hyun-chang;Kim, Do-gwan;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.121-122
    • /
    • 2015
  • In recent years, as people's attention on health, the demand for healthy crops such as mushrooms gradually increased. Farmers use plastic greenhouse cultivation mode more and more in order to reduce the impact of outdoor environment on crop cultivation, which requires farmers to adjust the greenhouse temperature at any time. But the majority of farmers still use a thermometer to measure temperature. This paper constructs an environment that can automatically adjust the temperature, so as to measuring temperature in real time, improving the efficiency of the farm work, and reducing unnecessary labor.

  • PDF

Development Design to automatically control temperature & humidity needed to develop mushroom crop including image contents (영상콘텐츠를 포함한 농작물 육성에 필요한 온·습도 자동제어장치 개발에 관한 설계)

  • Lee, Hyun-chang;Jin, Chan-Yong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.368-370
    • /
    • 2016
  • The purpose of the cultivated crops have been changes in the aim of improving quality production. In recent years, as people's attention on health, the demand for healthy crops such as mushrooms gradually increased. Farmers use plastic greenhouse cultivation mode more and more in order to reduce the impact of outdoor environment on crop cultivation, which requires farmers to adjust the greenhouse temperature at any time. But the majority of farmers still use a thermometer to measure temperature. This paper constructs an environment that can automatically adjust the temperature, so as to measuring temperature in real time, improving the efficiency of the farm work, and reducing unnecessary labor.

  • PDF

Control Effect of Sudan Grass on Root-Knot Nematode, Meloidogyne incognita, in Cucumber and Lettuce Greenhouses (오이와 상추 재배지에서 수단그라스를 이용한 Meloidogyne incognita의 방제 효과)

  • Kim, Hyeong-Hwan;Kim, Dong-Hwan;Yang, Chang-Yeol;Kang, Taek-Jun;Han, Kyung-Sook;Park, Hae-Woong;Jung, Young-Hak;Jeon, Sung-Wook;Song, Jin-Sun;Choo, Ho Yul
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.264-269
    • /
    • 2014
  • The effect of biological control of the root-knot nematode, Meloidogyne incognita, on cucumber and lettuce was evaluated with green manure crop species in greenhouse. Nematicidal effect of sudan grass cultivation in cucumber greenhouse was comparable to that of chemical treatment with fosthiazate GR, showing the high activity of 88.6%. Sudan grass cultivation in lettuce greenhouse significantly reduced the number of M. incognita in soil, showing 93.5% of nematiidal activity. In addition, since growth of sudan grass was superior to other green manure crop species, it is considered that cultivation of sudan grass is proper to control M. incognita in greenhouse.

Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops (국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1252-1257
    • /
    • 2011
  • Number of crop residues generated at large amount in agriculture can be utilized as substrate in methane production by anaerobic digestion. Greenhouse vegetable crop cultivation that adopting intensive agricultural system require the heating energy during winter season, meanwhile produce waste biomass source for the methane production. The purpose of this study was to investigate the methane production potential of greenhouse vegetable crop residues and to estimate material and energy yield in greenhouse system. Cucumber, tomato, and paprika as greenhouse vegetable crop were used in this study. Fallen fruit, leaf, and stem residues were collected at harvesting period from the farmhouses (Anseong, Gyeonggi, Korea) adopting an intensive greenhouse cultivation system. Also the amount of fallen vegetables and plant residues, and planting density of each vegetable crop were investigated. Chemical properties of vegetable waste biomass were determined, and theoretical methane potentials were calculated using Buswell's formula from the element analysis data. Also, BMP (Biochemical methane potential) assay was carried out for each vegetable waste biomass in mesophilic temperature ($38^{\circ}C$). Theoretical methane potential ($B_{th}$) and Ultimate methane potential ($B_u$) off stem, leaf, and fallen fruit in vegetable residues showed the range of $0.352{\sim}0.485Nm^3\;kg^{-1}VS_{added}$ and $0.136{\sim}0.354Nm^3\;kg^{-1}VS_{added}$ respectively. The biomass yields of residues of tomato, cucumber, and paprika were 28.3, 30.5, and $21.5Mg\;ha^{-1}$ respectively. The methane yields of tomato, cucumber, and paprika residues showed 645.0, 782.5, and $686.8Nm^3\;ha^{-1}$. Methane yield ($Nm^3\;ha^{-1}$) of crop residue may be highly influenced by biomass yield which is mainly affected by planting density.

Assessment of Greenhouse gases Emission of Agronomic Sector between 1996 and 2006 IPCC Guidelines (1996년과 2006년 IPCC 가이드라인별 경종부문 온실가스 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;Lee, Deog-Bae;Shim, Kyo-Moon;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1214-1219
    • /
    • 2011
  • This study was conducted to compare of greenhouse gas emissions between 1996 and 2006 IPCC (Intergovernmental Panel on Climate Change) guidelines change. Greenhouse gas emissions were calculated separately by rice cultivation, agricultural soils and field burning of agricultural residues from 2000 to 2008 according to 1996 and 2006 IPCC guidelines. To calculate greenhouse gas emissions, emission factor and activity data were used IPCC default value and the food, agricultural, forestry and fisheries statistical yearbook of MIFAFF (Ministry for Food, Agriculture, Forestry, and Fisheries). The greenhouse emissions by 1996 IPCC guidelines were highest in rice cultivation as 4,008 $CO_2$-eq Gg of 2000 and 3,558 $CO_2$-eq Gg of 2008. The emissions by N-fixing crops, crop residues returned soils and field burning did not much affect the total emissions. $CO_2$ emissions by urea and lime were calculated by adding in 2006 IPCC guidelines and its emissions were 157 and 82 $CO_2$-eq Gg in 2008 respectively. The emissions by N-fixing crops, crop residues returned to soils and field burning, in common with 1996 IPCC guidelines, did not have a significant impact on total emissions. The total emissions in agronomic sector was decreased continuously from 2000 to 2008 and annual emissions by 2006 IPCC guidelines were approximately 26-29% less than the 1996 IPCC guidelines.

Relationship Analysis of Reference Evapotranspiration and Heating Load for Water-Energy-Food Nexus in Greenhouse (물-에너지-식량 넥서스 분석을 위한 시설재배지의 기준작물증발산량과 난방 에너지 부하 관계 분석)

  • Kim, Kwihoon;Yoon, Pureun;Lee, Yoonhee;Lee, Sang-Hyun;Hur, Seung-Oh;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.23-32
    • /
    • 2019
  • Increasing crop production with the same amount of resources is essential for enhancing the economy in agriculture. The first prerequisite is to understand relationships between the resources. The concept of WEF (Water-Energy-Food) nexus analysis was first introduced in 2011, which helps to interpret inter-linkages among the resources and stakeholders. The objective of this study was to analyze energy-water nexus in greenhouse cultivation by estimating reference evapotranspiration and heating load. For the estimation, this study used the physical model to simulate the inside temperature of the agricultural greenhouse using heating, solar radiation, ventilated and transferred heat losses as input variables. For estimating reference evapotranspiration and heating load, Penman-Monteith equation and seasonal heating load equation with HDH (Heating Degree-Hour) was applied. For calibration and validation of simulated inside temperature, used were hourly data observed from 2011 to 2012 in multi-span greenhouse. Results of the simulation were evaluated using $R^2$, MAE and RMSE, which showed 0.75, 2.22, 3.08 for calibration and 0.71, 2.39, 3.35 for validation respectively. When minimum setting temperature was $12^{\circ}C$ from 2013 to 2017, mean values of evapotranspiration and heating load were 687 mm/year and 2,147 GJ/year. For $18^{\circ}C$, Mean values of evapotranspiration and heating load were 707 mm/year and 5,616 GJ/year. From the estimation, the relationship between water and heat energy was estimated as 1.0~2.6 GJ/ton. Though additional calibrations with different types of greenhouses are necessary, the results of this study imply that they are applicable when evaluating resource relationship in the greenhouse cultivation complex.

Heating Effect of Greenhouse Cultivated Mangos by Heat Pump System using Underground Air as Heat Source (지하공기 이용 히트펌프시스템의 망고온실 난방효과)

  • Kang, Younkoo;Kim, Younghwa;Ryou, Youngsun;Kim, Jongkoo;Jang, Jaekyoung;Lee, Hyoungmo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.200.1-200.1
    • /
    • 2011
  • Underground air is a special energy source in Jeju and distributes lava cave, pyroclastic, open joint, and crushing zone. A possible area to utilize underground air is 85% of Jeju except to the nearby area of Sambang Mt. and 25m high coastal area from sea level. In Jeju, underground air is used for heating agricultural facilities such as greenhouse cultivated mangos, Hallbong and mandarin orange, pigsty, mushroom cultivation house, etc. and fertilizing natural $CO_2$ gas by suppling directly into agricultural facilities. But this heating method causes several problem because the underground air has over 90% relative humidity and is inadequate in heating for crops. Mangos are the most widely grown tropical fruit trees and have been cultivated since 1993 in Jeju. In Jeju, the cultivating area is about 20ha and amount of harvest is 275ton/year in 2010. In this study, the heat pump system using underground air as heat source was installed in mangos greenhouse which area is $495m^2$. The capacity of heat pump system and heat storage tank was 10RT, 5ton respectively and heating effect and heating performance of the system were analysed.

  • PDF