• Title/Summary/Keyword: greenhouse climatic

Search Result 69, Processing Time 0.033 seconds

Shoot Growth Characteristics and Climatic Factors in Greenhouse Cultivation of Mulberry (뽕나무의 온실재배에서 신초 생육 특성과 기상 요인)

  • Kim, Ho-Cheol;Kwon, Tae-Oh;Bae, Jong-Hyang;Kim, Tae-Choon
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.74-78
    • /
    • 2012
  • This research was carried out to investigate the shoot growth characteristics and climatic factors for early harvest and stable yield by greenhouse on mulberry ($Morus$ $alba$) in Buan-gun, Jeollabuk-do. Budbreak and coloring date of mulberry in greenhouse were earlier 18~19 days than those in field, and from bud-break to coloring was 39 days in both cultivation types. Shoot length and fruit number per shoot of mulberry in greenhouse were not significantly different with those of field, but number of node was significantly little than that of field. For 39 days in greenhouse, weekly cumulative radiation were 0.3~0.8 times. But weekly cumulative temperature was not different with that of field. And relative humidity as range of 53.0~94.5% in greenhouse was higher than that of field. Therefore, mulberry is suitable to greenhouse cultivation for early harvest and stable yield.

Effect of Climatic Conditions on Pollination Behavior of Honeybees (Apis mellifera L.) in the Greenhouse Cultivation of Watermelon (Citrullus lanatus L.)

  • Lee, Kyeong Yong;Lim, Jeonghyeon;Yoon, Hyung Joo;Ko, Hyeon-Jin
    • Journal of Apiculture
    • /
    • v.33 no.4
    • /
    • pp.239-250
    • /
    • 2018
  • We investigated the pollination activity of honeybees (Apis mellifera L.) in terms of different climatic conditions in the greenhouse cultivation of watermelons (Citrullus lanatus L.) during winter. The aim of the study was to search a climatic condition which effectively can be use honeybees as pollinators during the flowering season of watermelons in winter or early spring. The average climatic conditions inside the greenhouse during the bee activity time (BAT)-between 10:00 and 16:00 in mid-Februarywere a temperature of $30.4^{\circ}C$, relative humidity of 53.7%, illuminance level of 22,728.4lx, and UV level of $0.233mW/cm^2$. Bee traffic and foraging activity were at their greatest at 10:00 and tended to decrease with time. Male watermelon flowers typically dehisced between 10:00 and 12:00. Climatic conditions were significantly correlated with bee activities, including bee traffic and foraging activity. Bee activities were positively correlated with temperature, illuminance level, and UV level but negatively correlated with relative humidity. Temperature had the greatest effect on honeybee behavior. Among the foraging honeybees, the number of high-flying bees that did not pollinate flowers showed a strong positive correlation with temperature, and the number of bees landing on the flowers showed a positive correlation with the UV level. The temperature range inside greenhouses at which the pollination activities of honeybees can be maintained efficiently during winter watermelon pollination was found to be $21{\sim}25^{\circ}C$.

A Model for Estimating Reference Crop Evapotranspiration in the Greenhouse (시설내의 기준작물 증발산량 산정모형의 개발)

  • 이남호;오승태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.50-56
    • /
    • 2001
  • In order to provide basic information for the estimation of reference crop evapotranspiration in the greenhouse on experiment was performed. Daily evapotranspiration of the reference crop wear measured using lysimeters. kentucky Blue Grass was used as a reference crop. Climatic elements I the greenhouse such as air temperature relative humidity and radiation were measured. The influence of each climatic element on the evapotranspiration were analyzed. A multi-regression model for the estimation of reference crop evapotranspiration in the greenhouse was developed and tested simulated evapotranspiration by the model were in good agreement with measured evapotransiration.

  • PDF

Design and Utilization of Climagraph for Analysis of Regional Suitability of Greenhouse Cropping in Korea (국내 온실재배의 적지성 분석을 위한 Climagraph의 작성과 이용)

  • Lee, Hyeon-U;Lee, Seok-Geon;Lee, Jong-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.61-64
    • /
    • 2002
  • We constructed climagraphs for 16 regions of Korea by using the average monthly minimum air temperature, maximum air temperature and global radiation. We characterized the outside climate requirements corresponding to the climate requirements of crops in greenhouses. The climagraphs allow to decide the appropriate climate periods for greenhouse cultivation without heating and cooling equipment. These graphs may be used for analyzing climatic characteristic of a given area, selecting the suitable region and greenhouse and making a rational plan for greenhouse cropping in Korea. We found difficulty in deciding the beginning and end of greenhouse heating and cooling period due to insufficient references.

  • PDF

A Study on Environment-Friendly Characteristics of campus buildings for creating a green campus (그린캠퍼스 조성을 위한 대학건물의 친환경적 특성에 관한 연구)

  • Jeong, Sook-In;Nam, Kyung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.221-228
    • /
    • 2009
  • Recently severity of ecological adaptation and climatic change due to global warming grows larger. According to the fourth report of IPCC in 2007, emission quantity of the earth greenhouse gas(GHGs) generated by activity of mankind increased with 80% since 1970. And it is forecasted that worldwide greenhouse gas will be increased with 25~90%(corresponding to $CO_2$) between 2000 and 2030. This increment of greenhouse gas($CO_2$) is expected to raise average temperature of the earth with the maximum $6.4^{\circ}C$, and sea surface with 59cm in 2090. Like this, destruction of environment by greenhouse gas is regarded as universal problem threatening the existence, not only the problem of one nation. Consequently, systematic correspondence to the global warming at the aspect of energy consumption is also needed in Korea. From the analysis result of 'Statistics of Energy Consumption' published by Green Korea in 2007, energy consumption increment of domestic universities was higher as many as 3.7 times than 22.5% of the whole energy consumption increment in our country. This says to be the direct example which shows that universities are huge sources of greenhouse gas emission. New constructing and enlarging buildings of each universities within campus are the most major reason for such a large increment of energy consumption in universities. The opinion that the possibility of causing energy waste and efficiency reduction is raised by increased buildings of universities has been propounded. That is, universities should make concrete goal and the plan for reducing emission of green house gas against climatic change, and should practice. Accordingly, there is the meaning that 2 aspects of environment-friendly design characteristics, that is application of energy utilizing technology, material usage of energy efficiency-side and environment-side, and introduction of natural element in the environmental aspect, were analyzed for facilities of university campus designed in environment-friendly point of view from initial stage of plan, and direction of environment-friendly design of university facilities in the future was groped in order to grasp environment-friendly design tendency of internal and external University facilities based on this analysis of this paper.

Study on Clean Development Mechanism Baseline Design (청정개발체제(CDM) 기준선 설계에 관한 연구)

  • Jin, Dong-Geun;Ree, Sang-Bok
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.129-134
    • /
    • 2006
  • Environmental pollution was begun to rise suffering increase in population with fast economic growth after industrial revolution teeth. Be, air pollution out of them, pollution most seriously happen, and began to cope in greenhouse gas danger from this time. Presents greenhouse gas problem is becoming universal interest ago, and our country is becoming problem. Wish to reduce greenhouse gas in world climatic change convention through Gyoto mekanijeum to reduce greenhouse gas. Wish to present standard for consideration in among CDM business, base line formation out of them.

  • PDF

Development of Multi-span Plastic Greenhouse for Tomato Cultivation (토마토 재배용 연동 플라스틱 온실 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.428-436
    • /
    • 2012
  • This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

Analysis of the Correlation between Climatic Elements and Electricity Generation of Building Integrated Photo Voltaic on Gymnasium Building's Curtain Wall (체육관 커튼월에 설치된 건물일체형 태양광발전시스템의 발전량과 기후 요소 간의 상관성 분석)

  • Park, Kang-Hyun;Lee, Jeong-Hun;Kim, Su-Min;Park, Kyung-Won
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • Concerning about global warming due to emission of greenhouse effect gas like C02 and depletion of fossil fuels have been spreading. So the need for solar energy utilization is increased. It is essentially important to make efforts to reduce usage of fossil energy resources. In this study, we analyzed the correlation between climatic elements and the photovoltaic power generation. Cloud cover of the correlation coefficient was 0.93. The order of the correlation coefficient was average temperatures, hours of sunshine duration of sunshine and the humidity. To accurately analyze of the degree of correlation for the photovoltaic power generation, additional research about climatic elements that show a high correlation is needed.

A Case Study on the Energy Conservation Design Strategies of the Multipurpose Greenhouse (다목적 그린하우스의 에너지절약설계 사례연구)

  • Kim, Soon-Joo;Na, Su-Yeun
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.101-107
    • /
    • 2006
  • The Purpose of this study is to provide the basic data for energy conservation strategies of the multipurpose greenhouse which is appropriate to Jeju environmental circumstance. In this study, climatic analysis, field works, literature reviews and building load calculations were performed to identify solutions to design needs. As conceptual design strategies, various energy conservation strategies such as passive solar design, natural ventilation and high performance glazing system were examined and applied to design alternatives.

A Study on the Greenhouse Gas (CO2) Emission Reduction through Constructing Inventories and Process Diagnostic Techniques in Chemical Industry (A case of Ulsan City, Korea) (화학산업의 인벤토리 구축 및 공정진단을 통한 온실가스 배출 저감에 관한 연구)

  • Ahn, Jun-Ki;Cho, Kyoung-O;Cho, Hyun-Rae;Lee, Man-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3302-3309
    • /
    • 2011
  • This study showed the reduced greenhouse gas(GHG) emission through GHG inventory establishment and process diagnosis for a response to climatic change. Also, it presented a direction for company's response to climatic change. Ulsan from its industrial complex has many energy-intensive companies such as petrochemistry, automobile and shipbuilding, and as we judged that the systematic reduction of GHG emission would make a considerable reduction of GHG emission in national dimension we executed this study from 10 companies. It showed the high rate of direction GHG emissions by its process that 5 of 10 companies calculated GHG emission and built its inventory. Also, in order to reduce energy and GHG, it produced about 227,554 million won of its economic effect and 50,740 ton/yr of its sparing effect.