• Title/Summary/Keyword: green-electrical energy

Search Result 262, Processing Time 0.022 seconds

Comparison of Resin Impregnation and Mechanical Properties of Composites Based on Fiber Plasma Treatment (섬유 플라즈마 처리에 따른 복합재료의 수지 함침성 및 기계적 특성 비교)

  • Seong Baek Yang;Donghyeon Lee;Yongseok Lee;Dong-Jun Kwon
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.388-394
    • /
    • 2023
  • In composites manufacturing, increasing resin impregnation is a key way to speed up the manufacturing process and improve product quality. While resin improvement is important, simple fiber surface treatments can also improve resin flowability. In this study, different plasma treatment times were applied to carbon fiber fabrics to improve the impregnation between resin and fiber. Electrical resistivity measurements were used to evaluate the dispersion of resin in the fibers, which changed with plasma treatment. The effect of fiber surface treatment on resin spreadability could be observed in real time. When inserting a carbon fiber tow into the resin, the amount of resin that soaked into the tow was measured to objectively compare resin impregnation. Five minutes of plasma treatment improved the tensile and compressive strength of the composite by more than 50%, while reducing the void content and increasing the fire point impregnation flow rate. Finally, a dynamic flexural fatigue test was conducted using a portion of the composite used as an architectural composite part, and the composite part did not fail after one million cycles of a 3 kN load.

Optical Properties of Undoped and $Ni^{2+}$ -doped $MgIn_2Se_4$ Single Crystals ($MgIn_2Se_4 및 MgIn_2Se_4 : Ni^{2+}$ 단결정 성장의 광학적 특성에 관한 연구)

  • Kim, Hyeong-Gon;Kim, Byeong-Cheol;Sin, Seok-Du;Kim, Deok-Tae;Choe, Yeong-Il;Kim, Nam-O
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.12-17
    • /
    • 1999
  • $MgIn_2Se_4 and MgIn_2Se_4 : Ni^{2+}$ single crystals were grown in the rhombohedral structure by the chemical transport reaction (C.T.R.) method using iodine as a transport agent. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of these compounds had a direct band gap. The fundamental absorption band edge of these single crystals shift to a shorter wavelength region by decreasing temperature and the temperature dependence of the optical energy gaps in these compounds satisfy Varshni equation. The impurity optical absorption peaks due to nickel are observed in $MgIn_2Se_4 and MgIn_2Se_4 : Ni^{2+}$ single crystal. These impurity optical absorption peaks can be attributed to the electronic transitions between the split energy levels of $Ni_{2+}$ ions located at $T_d$ symmetry site of $MgIn_2Se_4$ host lattice. In the hotoluminescence spectrum of the single crystal at 10 K, a blue emission with a peak at 687nm and a green emission with a peak at 815nm for the $MgIn_2Se_4$ single crystal were observed.

  • PDF

Active Frequency with a Positive Feedback Anti-Islanding Method Based on a Robust PLL Algorithm for Grid-Connected PV PCS

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.360-368
    • /
    • 2011
  • This paper proposes an active frequency with a positive feedback in the d-q frame anti-islanding method suitable for a robust phase-locked loop (PLL) algorithm using the FFT concept. In general, PLL algorithms for grid-connected PV PCS use d-q transformation and controllers to make zero an imaginary part of the transformed voltage vector. In a real grid system, the grid voltage is not ideal. It may be unbalanced, noisy and have many harmonics. For these reasons, the d-q transformed components do not have a pure DC component. The controller tuning of a PLL algorithm is difficult. The proposed PLL algorithm using the FFT concept can use the strong noise cancelation characteristics of a FFT algorithm without a PI controller. Therefore, the proposed PLL algorithm has no gain-tuning of a PI controller, and it is hardly influenced by voltage drops, phase step changes and harmonics. Islanding prediction is a necessary feature of inverter-based photovoltaic (PV) systems in order to meet the stringent standard requirements for interconnection with an electrical grid. Both passive and active anti-islanding methods exist. Typically, active methods modify a given parameter, which also affects the shape and quality of the grid injected current. In this paper, the active anti-islanding algorithm for a grid-connected PV PCS uses positive feedback control in the d-q frame. The proposed PLL and anti-islanding algorithm are implemented for a 250kW PV PCS. This system has four DC/DC converters each with a 25kW power rating. This is only one-third of the total system power. The experimental results show that the proposed PLL, anti-islanding method and topology demonstrate good performance in a 250kW PV PCS.

Influence of Oxygen-/Nitrogen-containing Functional Groups on the Performance of Electrical Double-Layer Capacitor (전기이중층 커패시터의 성능에 미치는 산소/질소 함유 관능기들의 영향)

  • Kim, Jieun;Kwon, Young-Kab;Lee, Joong Kee;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1043-1048
    • /
    • 2012
  • In this study, activated carbons (ACs) were modified as electrode materials for an electric double layer capacitor (EDLC) by controlling oxygen- and nitrogen-containing functional groups. The morphological and chemical properties of ACs were analyzed through scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectrometer, automatic elemental analyzer (EA) and Boehm titration. Also, charge/discharge tests were performed to investigate the EDLC performance. Oxygen- and nitrogen-containing functional groups were introduced on the surface of ACs through acid and urea treatments, respectively. ACs with nitrogen-containing functional groups showed 2 mA increase of gravimetric discharge capacity and quick achievement of maximum charge/discharge performance. However, ACs with oxygen-containing functional groups showed low discharge capacity and its gradual decrease during further cyclic test, since the functional groups interrupted adsorption/desorption of charges in the electrolyte on the surface of ACs.

A Study on the Optimal Resource Configuration Considering Load Characteristics of Electric Vehicles in Micro Grid Environment (전기자동차 부하 특성을 고려한 마이크로그리드의 최적 전원 구성에 관한 연구)

  • Hwang, Sung-Wook;Chae, Woo-Kyu;Lee, Hak-Ju;Yun, Sang-Yun;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.228-231
    • /
    • 2015
  • In power system research fields, one of current key issues is the construction and commercialization of micro grid site which is called green island, carbon zero island, energy independent island, building micro grid, etc. and various affiliated technologies have been being vigorously developed to realize. In addition, various researches about electric vehicles (EVs) are in progress and it is expected to penetrate rapidly with the next a few years. Some new load models should be developed integrating with electric vehicle loads because the EVs' deployment could cause the change of load composition rate on power system planning and operations. EVs are also resources for micro grid as well as distributed generation and demand response so that various supply and demand side resources should be considered for micro grid researches. In this paper, the load composition rate of residential sectors is prospected considering the deployment of EVs and the resource configuration of micro grid is optimized based on net present cost. In the optimization, the load patten of case studies includes EV's charging characteristics and various cases are simulated comparing micro grid environment and normal condition. HOMER is used to compare various cases and economic effects.

Trends in safety improvement technologies for an electric propulsion system of eco-friendly ships (친환경 선박용 전기추진시스템 안전성 향상 기술개발 동향)

  • Kim, Sehwan;Choi, Gilsu;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.556-564
    • /
    • 2021
  • This paper presents trends of safety improvement technologies for an electric propulsion system of eco-friendly ships. As an effort to reduce a green house effect, demands for eco-friendly ships have been increased. An energy storage system (ESS) is one of key systems in an eco-friendly ship and a lithium-ion battery generally used in an ESS system due to its high power density and efficiency. However, a lithium-ion battery is considered as one of reasons for ESS fire hazard. Since a fire extinguishing facility is especially limited in the ocean, safety issue in an eco-friendly ship is important. In this paper, recent safety improvement technologies for traction motors, ESS batteries and structures for eco-friendly ships are presented.

Energy-efficient Buffer-aided Optimal Relay Selection Scheme with Power Adaptation and Inter-relay Interference Cancellation

  • Xu, Xiaorong;Li, Liang;Yao, Yingbiao;Jiang, Xianyang;Hu, Sanqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5343-5364
    • /
    • 2016
  • Considering the tradeoff between energy consumption and outage behavior in buffer-aided relay selection, a novel energy-efficient buffer-aided optimal relay selection scheme with power adaptation and Inter-Relay Interference (IRI) cancellation is proposed. In the proposed scheme, energy consumption minimization is the objective with the consideration of relay buffer state, outage probability and relay power control, in order to eliminate IRI. The proposed scheme selects a pair of optimal relays from multiple candidate relays, denoted as optimal receive relay and optimal transmit relay respectively. Source-relay and relay-destination communications can be performed within a time-slot, which performs as Full-Duplex (FD) relaying. Markov chain model is applied to analyze the evolution of relay buffer states. System steady state outage probability and achievable diversity order are derived respectively. In addition, packet transmission delay and power reduction performance are investigated with a specific analysis. Numerical results show that the proposed scheme outperforms other relay selection schemes in terms of outage behavior with power adaptation and IRI cancellation in the same relay number and buffer size scenario. Compared with Buffer State relay selection method, the proposed scheme reduces transmission delay significantly with the same amount of relays. Average transmit power reduction can be implemented to relays with the increasing of relay number and buffer size, which realizes the tradeoff between energy-efficiency, outage behavior and delay performance in green cooperative communications.

Technology Trend in Ionic Liquids (이온성 액체의 기술 동향)

  • Lee, Hyunjoo;Lee, Je Seung;Ahn, Byoung Sung;Kim, Hoon Sik
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.595-602
    • /
    • 2005
  • Ionic liquids (ILs) are the ionic salts pertaining to liquid-state at lower temperature than $100^{\circ}C$. ILs have attracted attention as new media because of their peculiar chemical, physical or electrical properties such as low volatility, nonflammability, liquid-phase stability at high temperature, high ability in solvating organic, inorganic or polymeric materials, and high ionic conductivity. Since the properties can be modified by assembling the pair using various anions and cations, ILs are often called designer solvents. In addition, ILs have been expected as new green media to replace the volatile organic solvents, which have been widely used in chemical, energy, material, and electronic industries, as well as to enhance the reaction activity and selectivity. In this review paper, the structures, properties, applications, and technology trend of ILS are introduced.

Experimental verification of inverter's optimal controller for driving 150kW SPMSM of EGR blower of Green-ships (친환경 선박 EGR 블로워용 150kW SPMSM 구동 인버터 최적제어기의 실험적 검증)

  • Sehwan, Kim;Yeonwoo, Kim;Minjae, Kim;Uihyung, Yi;Sungwon, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.596-601
    • /
    • 2022
  • The application of the EGR system is increasing according to the recent trend of conversion to green-ships. EGR blower, one of the core parts of the EGR, consists of aerodynamic system and e-motor and inverter and etc. For the e-motor, a permanent magnet type synchronous motor with high energy density and excellent efficiency is applied recently. Small and medium-sized enterprises trying to develop the e-motors, however, for marine inverters mostly developed by global advanced companies due to the rigid classification certification and technical difficulties. One of disadvantage of universal inverters is that when optimal control fails, it is difficult to find the cause from user's point of view. Therefore, in this study, optimal controllers(Current vector contol and Tracking observer) for SPMSM for EGR blower was designed and verified to analyze the causes of failure of optimal control of universal inverter.

An Analysis of Energy Consumption and GHG Emission per Unit of Rail and Road Transportation (철도와 도로 수송부문의 에너지 소비 및 온실가스 배출 원단위 분석)

  • Kim, Byung-Kwan;Lee, Jin-Sun;Kim, Hyoun-Ku;Lee, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • In general, the rail transportation recognized as a better transportation mode than road transportation in terms of the environment. However, due to a lack of quantitative analysis based on Korean data, foreign cases for environmental advantages of the railway have often been cited in Korea. To address this issue, we estimated the energy consumption of passenger and freight transportation using certified activity data from Korea Railroad Statistics and the Electrical Work Report for railway and the Energy Consumption Survey for road. We estimated the Green House Gas emission of passenger and freight transportation on a Tier 1 level by applying the IPCC 2006 Guideline. Finally, we calculated the energy consumption unit and GHG emission unit to determine the environmental impact of rail and road transportation. We also compared the analyzed results of high-speed rail and auto as typical means of rail and road transportation.