• Title/Summary/Keyword: green wall

Search Result 307, Processing Time 0.024 seconds

A Study on the Characteristic of Indoor Green-Wall Design - With Focused on Preference of Emotional Image Language - (실내 벽면녹화디자인 특성 연구 - 감성이미지 언어에 따른 선호도를 중심으로 -)

  • Lee, Ji-Hyun;Jang, Young-Soon
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.593-604
    • /
    • 2011
  • This study examines potential growth and different perspectives on green-walls, which are being re-evaluated recently. The aim is to identify the viewer preferences concerning the walls by collecting a wide spectrum of information to create an interior design related comprehensive and intellectual database. Also based on this proposition, choosing a green surface of indoor wall as a specific example stimulus, identifying a relationship betweeationsviewer's preference factors. The relationship will formulate detailed and absolute qualities, which will reach potential areas that the green walls can be widely applied in. As a result of a factor analysis, the viewers classified into the 3 factors as is pleasant, gorgeous and rich about the stimulus. Preferred key factors, which are closely related to emotional image language, were; cool, tidy, comfortable and beautiful. The common factors in preferred design stimulus, in order of importance are color>elements>image/form/plants. Specific levels of design factors according to relevance are contrast>furniture> modern>central/creeper foliage plants. In the meantime, this study is leading the process of quantitative measurement of green-walls to a new design direction and it is critical to consistently experimenting to back up the theory with solid evidence.

  • PDF

Analysis of Structural Work Scheduling of Green Frame - Focusing on Apartment buildings - (Green Frame의 골조공사 공기 분석 연구 - 공동주택을 중심으로 -)

  • Lee, Sung-Ho;Kim, Shin-Eun;Kim, Gwang-Hee;Joo, Jin-Kyu;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.301-309
    • /
    • 2011
  • Apartment housings that adopt a bearing wall structure design, which account for a majority of the housing units available in Korea, are not free from structural constraints that limit the extension of their service life. The resulting need for reconstruction from the ground up requires a massive consumption of resources and energy, and triggers environmental pollution resulting from construction wastes. As a solution to such issues, the government enforces incentive schemes to promote a remodeling-friendly rahmen structure design. Green Frame, which is a novel concept of composite precast concrete structure to support rahmen structure apartment housing buildings, can address the constraints of bearing wall structure and conventional rahmen structure designs that limit the potential for remodeling projects, while reducing the term of construction. Therefore, this study aims to analyze the characteristics of Green Frame and its absolute term of construction, and compare the terms of frame work construction in apartment housing projects adopting different structural design approaches to illuminate their differences. In the end, Green Frame is found to be capable of reducing the term of construction in apartment housing projects. As the term of construction is a very critical element of a construction project, Green Frame will ultimately prove to be one of the key enablers to ensure the success of apartment housing construction projects.

A Study on the WFS Co-mixtures by Small Scale Retaining Wall Test (모형옹벽실험을 이용한 폐주물사 혼합재의 지반공학 적용성 연구)

  • 조재윤;이관호;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.419-426
    • /
    • 2000
  • The purpose of this study is to present the application of WFS co-mixtures for retaining wall as flowable backfill. The fly ash, generated at the Tae-An thermoelectric power plant, was used in this research and was classified as Class F. Green Sand, Furane Sand, and Coated Sand, which had been used at a foundry located in Pusan, were used. Couple of laboratory tests and small scale retaining wall tests were performed to obtain the physical properties of the WFS co-mixtures and the possibility of backfill materials of retaining wall. The range of permeability for all the co-mixtures was from 3.0${\times}$10$\^$-3/ cm/s to 6.0${\times}$10$\^$-5/ cm/s. The unconfined strength of the 28-day cured specimens reached around 550kPa. Results of the consolidated-undrained triaxial test showed that the internal friction angle is between 33.5$^{\circ}$ and 41.8$^{\circ}$. The lateral earth pressure against wall decreased up to 80% of initial pressure within a 12 hours and the total lateral earth pressure is less than that of typical granular soil. It was enough to construct the backfill for the standard retaining of 6m with just two steps, like fill the co-mixtures for half of retaining wall, and then fill the others after 1 day. The stability of retaining wall for overturning and sliding increased as the curing time elapsed.

  • PDF

A PRELIMINARY STUDY OF EFFECT OF THE GREEN FEATURE - WING WALLS ON NATURAL VENTILATION IN BUILDINGS

  • Cheuk Ming Mak;Jian Lei Niu;Kai Fat Chan
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.814-819
    • /
    • 2005
  • There is growing consciousness of the environmental performance of buildings in Hong Kong. The Buildings Department, the Lands Department and the Planning Department of the Hong Kong Government issued the first of a series of joint practice notes [1] to promote the construction of green and innovative buildings. Green features are architectural features used to mitigate migration of noise and various air-borne pollutants and to moderate the transport of heat, air and transmission of daylight from outside to indoor environment in an advantageous way. This joint practice note sets out the incentives to encourage the industry in Hong Kong to incorporate the use of green features in building development. The use of green features in building design not only improves the environmental quality, but also reduces the consumption of non-renewable energy used in active control of indoor environment. Larger window openings in the walls of a building may provide better natural ventilation. However, it also increases the penetration of direct solar radiation into indoor environment. The use of wing wall, one of the green features, is an alternative to create effective natural ventilation. This paper therefore presents a preliminary numerical study of its ventilation performance using Computational Fluid Dynamics (CFD). The numerical results will be compared with the results of the wind tunnel experiments of Givoni.

  • PDF

Morphological Characteristics and Composition of Cell Wall Polysaccharides of Brassica campestris var. pekinensis (Baechu) (배추조직의 형태학적 특성과 세포벽 다당류의 조성)

  • Kim, Sun-Dong;Park, Hong-Deok;Kim, Mi-Gyeong
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.301-309
    • /
    • 1997
  • This study was conducted to examine morphological characteristics and the content of cell wall polysaccharides of Brassica campestris var. pekinensis(baechu). First of all, the variety of scientific name and naming of parts of baechu in the literatures of kimchi showed, which will unify marks. So, we propose not so much mid-rib and leaf blade of baechu leaf as white part and green part, respectively. On the other hand, the forms of vessel elements of white part in baechu consist in ring, sclariform and reticulate thickening. The proximate compositions and contents of cell wall polysaccharides of baechu has significant differences between its cultivars. The cell wall pectin from baechu exhibited four peals with molecular weights of 2,000,000, about 100,000 and less than 10,000 by gel filteration chromatography and hemicellulose did two peaks with molecular weights of 2,000,000 and 10,000.

  • PDF

An Investigation on the Effects of Powder Warming, Inner Lubrication, and Die Wall Lubrication on the Die Wall Lubricated Warm Compation of Iron Powder

  • Ozaki, Yukiko;Alessandri, Elena;Uenosono, Satoshi;Takamiya, Tsuguyuki;Shigeru, Takano
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.750-751
    • /
    • 2006
  • We investigated the mechanism how the high green density can be provided during die lubricated warm compaction (WD). We observed and analyzed the densification processes of iron powders including different contents of an inner lubricant, and measured the lateral pressure at the die wall during WD in comparison with conventional compaction and warm compaction. As a result, the high density in WD was due to not only the particles-deformation enhanced by warming powders but also the particles-rearrangement promoted by reducing an amount of the inner lubricant rather than the die lubrication.

  • PDF

A study on great wall design of the main gate in campus (벽천 디자인에 관한 연구)

  • Han, Hae-Ryon
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2004.11a
    • /
    • pp.173-174
    • /
    • 2004
  • The Great Wall is an element in University which stand outs as a landmark. The Great Wall is located in front of the grand staircases of the gymnasium in the main gate area. Falling water and Lights shows a spectacle panorama in various point of view. Water falls down the top of the grand staircases and the front walls. And the red, blue and green lights brighten the falling water in the evenings. Also the relief of the palm tree and turtle symbolizes the University Identity. The wall is comprehends not only the day and the night but four seasons. The Water, Lights, and the Relief are coordinates well along with the new building in campus.

  • PDF

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.

CFD Simulation about Green Water on a Fixed FPSO in Regular Waves

  • Ha, Yoon-Jin;Nam, Bo Woo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.174-183
    • /
    • 2017
  • Numerical simulations were performed about the green water problem of a FPSO. Three regular waves in head sea were tested. A rectangular box-shaped FPSO was considered and it is assumed there is a vertical wall on the deck. For the numerical simulations, an open-source CFD code, OpenFOAM, was applied to solve the present problems. Focus is on wave fields around the FPSO, water flows and impact pressures on the deck. For the validation, the present calculation results were compared with the existing experimental of Lee et al. (2012) and Changwon university in KTTC Cooperative Study Report (2015). The statistical values and spatial distribution of the peak pressures are directly compared with the experimental data. Some discussions are made on the effects of the domain breadth on the Green water impact pressure.