• 제목/요약/키워드: green light emitting diode

검색결과 151건 처리시간 0.025초

Alq$_3$ 박막의 전기전도와 발광특성 (Electroluminescence Characteristics and Electrical Conduction of Alq$_3$ thin film)

  • 이청학;유선규;이종찬;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.439-442
    • /
    • 1998
  • In this paper, organic thin film LED(light emitting diode) having ITO glass/Alq$_3$/Al structure using an Alq$_3$ was fabricated by the vacuum evaporation and the absorbance, wave length, I-V characteristics were investigated, Electroluminescence of green and wavelength of 510[nm] were observed in this device. We observed absorbance form 320[nm] to 430[nm] and knew unstability of Alq$_3$ material as light emitting device.

  • PDF

Improvement In recombination at a two-emission-layers interface For White-light-emitting organic electroluminescent device

  • Song, Tae-Joon;Ko, Myung-Soo;Lee, Gyu-Chul;Cho, Sung-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.928-931
    • /
    • 2003
  • In order to realize full color display, two approaches were used. The first method is the patterning of red, green, and blue emitters using a selective deposition. Another approach is based on a white-emitting diode, from which the three primary colors could be obtained by micro-patterned color filters. White-light-emitting organic light emitting devices (OLEDs) are attracting much attention recently due to potential applications such as backlights in liquid crystal displays (LCDs) or other illumination purposes. In order for the white OLEDs to be used as backlights in LCDs, the light emission should be bright and have Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.33, 0.33). For obtaining white emission from OLEDs, different colours should be mixed with proper balances even though there are a few different methods for mixing colors. In this study, we will report a white organic electroluminescent device using exciton diffusion length concept.

  • PDF

Development of Current Control System for Solar LED Street Light System

  • Kim, Byun-Gon;Kim, Kwan-Woong;Jang, Tae-Su;Lee, Jun-Myung;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • 제1권1호
    • /
    • pp.52-56
    • /
    • 2012
  • As inexhaustible clean energy, solar energy will be the most ideal green energy in the 21st century. The effective method to convert solar energy into electrical energy is by solar photovoltaic power generation technologies. LED Emitting Diode is a kind of component which can transform electricity into visible light. As the smart current control system for photovoltaic street lights, the proposed system has improved the battery charging and discharging mechanism to extend the lifespan and effectively controls the LED discharge current according to battery charge state and lighting.

인공광원으로 발광다이오우드를 이용한 묘생산 시스템에서 식물생장 및 형태형성 제어 - 발광다이오우드의 분광 특성 및 광강도 - (Plant Growth and Morphogenesis Control in Transplant Production System using Light-emitting Diodes(LEDs) as Artificial Light Source - Spectral Characteristics and Light Intensity of LEDs -)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • 제24권2호
    • /
    • pp.115-122
    • /
    • 1999
  • Because of their small mass, volume, solid state construction and long life, light-emitting diodes(LEDs) hold promises as a lighting source for intensive plant production system. Spectral characteristics and light intensity of LEDs were tested to investigate their feasibility as artificial lighting sources for growth and morphogenesis control in transplant production system. Blue, green, and red LEDs had a peak-emission wavelength at 442nm, 522nm, and 673nm, respectively. Their half width defined as the difference between upper and lower wavelength in the intensity equivalent to 50% of the maximum intensity showed 26nm, 41nm, and 74nm, respectively. Photosynthetic photon flux(PPE) at the distance of 9cm under the LEDs array was measured as $235{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for red, $109{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for green, and $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for blue LEDs. At the same distance, green LEDs had the illuminance of 13,0001x, nine to ten times higher than those of red and blue LEDs. Red, green, and blue LEDs at a distance of 9cm had the irradiance of $46W{\cdot}m^{-2},\;19W{\cdot}m^{-2},\;8W{\cdot}m^{-2}$, respectively. Light intensity of blue, green, and red LEDs increased linearly in proportion to the magnitude of the current applied to the operating circuit. Thus the light intensity of LEDs was controlled by the applied current in operating circuit.

  • PDF

White-light-emitting Organic Electroluminescent Device Based On Incomplete Energy Transfer

  • Song, Tae-Joon;Ko, Myung-Soo;Lee, Sung-Soo;Cho, Sung-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.701-705
    • /
    • 2002
  • In order to realize full color display, two approaches were used. The first method is the patterning of red, green, and blue emitters using a selective deposition. Another approach is based on a white-emitting diode, from which the three primary colors could be obtained by micro-patterned color filters. White-light-emitting organic light emitting devices (OLEDs) are attracting much attention recently due to potential applications such as backlights in liquid crystal displays (LCDs) or other illumination purposes. In order for the white OLEDs to be used as backlights in LCDs, the light emission should be bright and have Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.33, 0.33). For obtaining white emission from OLEDs, different colors should be mixed with proper balances even though there are a few different methods for mixing colors. In this study, we will report a white organic electroluminescent device based on an incomplete energy transfer. In which the blue and green emission come from the same layer via incomplete energy transfer.

  • PDF

고상법을 이용한 LED용 SrGa2S4:Eu 녹색 형광체의 합성 및 발광특성 (Synthesis and Luminescence Characteristics of SrGa2S4:Eu Green Phosphor for Light Emitting Diodes by Solid-State Method)

  • 김재명;김경남;박정규;김창해;장호겸
    • 대한화학회지
    • /
    • 제48권4호
    • /
    • pp.371-378
    • /
    • 2004
  • 기존의 $SrGa_2S_4:Eu^{2+}$ 녹색 발광 형광체는 주로 CRT (Cathode Ray Tube)용이나 FED (Field Emission Display), 그리고 EL (Electroluminescence)용 발광소자로 많이 연구되어졌다. 현재는 장파장 영역의 여기 특성을 이용한 LED (Light Emitting Diode)용 형광체로 주목 되어지고 있다. $SrGa_2S_4:Eu^{2+}$ 형광체의 일반적 합성 방법은 Flux를 이용하여 인체에 유해한 $H_2S$$CS_2$ 기체를 사용할 뿐만 아니라 높은 합성온도, 긴 반응시간 및 공정이 복잡한 단점을 지니고 있다. 따라서 본 실험은 황화물계 원료인 SrS, $Ga_2S_3$ 그리고 EuS를 출발 물질로 하여 $H_2S$ 기체를 사용하지 않고 혼합 기체$(5% H_2/95% N_2)$를 사용해 환원 분위기 하에서 $SrGa_2S_4:Eu^{2+}$을 합성하였다. 그리고 다양한 합성 조건과 LED용으로 사용되기 위해 수세처리와 Sieving 과정을 거친 형광체의 발광특성을 검토하였다.

Effect of Color of Light Emitting Diode on Development of Fruit Body in Hypsizygus marmoreus

  • Jang, Myoung-Jun;Lee, Yun-Hae;Ju, Young-Cheol;Kim, Seong-Min;Koo, Han-Mo
    • Mycobiology
    • /
    • 제41권1호
    • /
    • pp.63-66
    • /
    • 2013
  • This study was conducted to identify a suitable color of light for development of the fruit body in Hypsizygus marmoreus. To accomplish this, samples were irradiated with blue (475 nm), green (525 nm), yellow (590 nm), or red (660 nm) light emitting diodes (LEDs) to induce the formation of fruiting bodies after mycelia growth. The diameter and thickness of the pileus and length of stipes in samples subjected to blue LED treatment were similar to those of subjected to fluorescent light (control), and the lengths of the stipes were highest in response to treatment with the red LED and darkness. The commercial yields of plants subjected to blue and green LED treatment were similar to those of the control. In conclusion, cultivation of H. marmoreus coupled with exposure to blue LED is useful for inducing high quality fruit bodies as well as higher levels of ergosterol, DPPH radical scavenging activity, total polyphenol content and reducing power.

Highly Luminescent (Zn0.6Sr0.3Mg0.1)2Ga2S5:Eu2+ Green Phosphors for a White Light-Emitting Diode

  • Jeong, Yong-Kwang;Cho, Dong-Hee;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2523-2528
    • /
    • 2012
  • Green phosphors $(Zn_{1-a-b}M_aM^{\prime}_b)_xGa_yS_{x+3y/2}:Eu^{2+}$ (M, M' = alkali earth ions) with x = 2 and y = 2-5 were prepared, starting from ZnO, MgO, $SrCO_3$, $Ga_2O_3$, $Eu_2O_3$, and S with a flux $NH_4F$ using a conventional solidstate reaction. A phosphor with the composition of $(Zn_{0.6}Sr_{0.3}Mg_{0.1})_2Ga_2S_5:Eu^{2+}$ produced the strongest luminescence at a 460-nm excitation. The observed XRD patterns indicated that the optimized phosphor consisted of two components: zinc thiogallate and zinc sulfide. The characteristic green luminescence of the $ZnS:Eu^{2+}$ component on excitation at 460 nm was attributed to the donor-acceptor ($D_{ZnGa_2S_4}-A_{ZnS}$) recombination in the hybrid boundary. The optimized green phosphor converted 17.9% of the absorbed blue light into luminescence. For the fabrication of light-emitting diode (LED), the optimized phosphor was coated with MgO using magnesium nitrate to overcome their weakness against moisture. The MgO-coated green phosphor was fabricated with a blue GaN LED, and the chromaticity index of the phosphor-cast LED (pc-LED) was investigated as a function of the wt % of the optimized phosphor. White LEDs were fabricated by pasting the optimized green (G) and the red (R) phosphors, and the commercial yellow (Y) phosphor on the blue chips. The three-band pc-WLED resulted in improved color rendering index (CRI) and corrected color temperature (CCT), compared with those of the two-band pc-WLED.

Green Light-emitting diode using a germyl-substituted PPV derivative

  • Hwang, Do-Hoon;Lee, Jeong-Ik;Cho, Nam-Sung;Shim, Hong-Ku
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.582-584
    • /
    • 2004
  • The light-emitting properties of poly(2-triethylgermyl-1,4-phenylenevinylene) (TEG-PPV) are compared with those of the silyl-substituted PPV homologue, poly(2-trimethylsilyl-1,4phenylenevinylene) (TMS-PPV). The precursor polymer is solution-processable. After carrying out thermal elimination on the precursor polymer film, the resulting fully conjugated polymer film was found to exhibit high thermal stability in air, and absorption that is shifted to the longer wavelength region owing to the extension of the n-conjugated system. TEG-PPV exhibits efficient green light emission; the maximum PL emission of a TEG-PPV thin film was found to be at 515 nm. The HOMO and LUMO energy levels were also determined using photo-emission spectroscopy. The performance of the TEG-PPV EL device was found to be comparable to that of the TMS-PPV device.

  • PDF

Binaphthyl group 기반의 물질을 이용한 효율적인 White OLED 소자에 대한 연구 (Study on the Efficient White Organic Light-Emitting Diodes using the Material of Binaphthyl Group)

  • 여현기
    • 한국응용과학기술학회지
    • /
    • 제29권3호
    • /
    • pp.459-465
    • /
    • 2012
  • 본 연구에서 7,7'-(2,2'dimethoxy-1,1'-binaphthyl-3,3'-diyl) bis(4-(thiophen-2-yl) benzo[e] [1,2,5] thiadiazole (TBT) 라는 binaphthyl기를 기반으로 가지는 녹색 도판트 물질을 합성하였다. 추가적으로 인광 발광 물질인 iridium(III)bis[(4,6-di-fluoropheny)-pyridinato -N,C2]picolinate (FIrpic)을 홀 수송용 호스트 물질인 N,N'-dicarbazolyl-3,5-benzene (mCP)에 도핑하고, TBT와 bis(2-phenylquinolinato)-acetylacetonate iridium(III) (Ir(pq)2acac)를 전자 수송용 호스트 물질인 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi)에 도핑하여 백색 빛을 발광하는 white organic light emitting diode (OLED)를 제작하였다. TBT를 사용하여 제작한 white OLED의 최대발광 효율과 외부 양자 효율은 각각 5.94 cd/A 과 3.23%를 나타냄을 알 수 있었다. Commission Internationale de I'Eclairage (CIE) 색 좌표의 값은 1000 nit에서 (0.34, 0.36)을 띄면서 순백색을 구현함을 확인하였다.